Polymersomes: A New Platform for Drug Targeting

  • Dennis E. Discher
  • Peter Photos
  • Fariyal Ahmed
  • Ranganath Parthasrathy
  • Frank S. Bates


Liposomes were first described in literature more than 30 years ago by Bangham (1). They have since been used widely in many fundamental studies of amphiphilic systems as well as in applications to extend and control the delivery of a broad variety of drugs (Fig. 1A). Thousands of publications, reviews, and monographs (e.g., (2)) now exist on liposomes. A handful of the documents have expressed ideas that emerge as the clearest backdrop for outlining the motivation, formation, properties, and compatibility of novel polymer-based vesicle platforms called “polymersomes” (3) (Fig. 1B).


Diblock Copolymer Giant Vesicle Copolymer Membrane Biomedical Aspect Stealth Liposome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bangham AD. Surrogate cells or Trojan horses. The discovery of liposomes. Bioessays 1995. 17: 1081–8.Google Scholar
  2. 2.
    Lasic DD, Papahadjopoulos D (Ed.): Medical applications of liposomes. Elsevier, 1998.Google Scholar
  3. 3.
    Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, Hammer DA: Polymersomes: tough vesicles made from diblock copolymers. Science 1999, 284 (5417): 1143–1146.CrossRefGoogle Scholar
  4. 4.
    Laverman P. Carstens MG. Boerman OC. Dams ET. Oyen WJ. van Rooijen N. Corstens FH. Storm G. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. Journal of Pharmacology & Experimental Therapeutics 2001. 298 (2): 607–12.Google Scholar
  5. 5.
    Williams SS. Alosco TR. Mayhew E. Lasic DD. Martin FJ. Bankert RB. Arrest of human lung tumor xenograft growth in severe combined immunodeficient mice using doxorubicin encapsulated in sterically stabilized liposomes. Cancer Research 1993. 53: 3964–7.Google Scholar
  6. 6.
    Lotem M. Hubert A. Lyass O. Goldenhersh MA. Ingber A. Peretz T. Gabizon A. Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Archives of Dermatology 2000. 136: 1475–80.CrossRefGoogle Scholar
  7. 7.
    Discher BM, Hammer DA, Bates FS, and Discher DE. Polymer vesicles in various media. Current Opinion in Colloid & Interface Science 2000. 5: 125–131.CrossRefGoogle Scholar
  8. 8.
    Yu K, Eisenberg A. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution. Macromolecules 1998, 31: 3509–3518.CrossRefGoogle Scholar
  9. 9.
    Uchegbu IF, Schatzlein AG, Tetley L, Gray AI, Sludden J, Siddique S, Mosha E. Polymeric chitosan-based vesicles for drug delivery. Journal of Pharmacy and Pharmacology 1998. 50 (5): 453–458.CrossRefGoogle Scholar
  10. 10.
    Liu S, O’Brien DF. Cross-Linking polymerization in two-dimensional assemblies: Effect of the reactive group site. Macromolecules 1999. 32: 5519–5524.CrossRefGoogle Scholar
  11. 11.
    Okada J, Cohen S, Langer R. In vitro evaluation of polymerized liposomes as an oral drug delivery system. Pharmaceutical Research 1995. 12: 576–82.CrossRefGoogle Scholar
  12. 12.
    Discher BM, Bermudez H, Hammer DA, Discher DE., Won Y-Y, and Bates FS. J. Phys. Chem. B 2002 (published online in February).Google Scholar
  13. 13.
    Semple SC, Chonn A, and Cullis PG. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behavior in vivo. Advanced Drug Delivery Reviews 1998, 32: 3–17.CrossRefGoogle Scholar
  14. 14.
    Bedu-Addo FK, Tang P, Xu Y, Huang L. Effects of polyethyleneglycol chain length and phospholipid acyl chain composition on the interaction of polyethyleneglycol phospholipid conjugates with phospholipid: implications in liposomal drug delivery. Pharmaceutical Research 1996. 13: 718–724.CrossRefGoogle Scholar
  15. 15.
    Israelachvili J. Intermolecular and Surface Forces,2nd ed., Academic Press, 1991.Google Scholar
  16. 16.
    Gregoriadis G. Fate of injected liposomes: Observations on entrapped solute retention, vesicle clearance and tissue distribution in vivo. In G. Gregoriadis (Ed.) Liposomes as Drug Carriers: Recent Trends and Progress, Wiley. New York, 1988, pp. 19–27.Google Scholar
  17. 17.
    Hwang KJ, and Beaumier PL. Disposition of liposomes in vivo. In G. Gregoriadis (Ed.) Liposomes as Drug Carriers: Recent Trends and Progress, Wiley. New York, 1988, pp. 19–27.Google Scholar
  18. 18.
    Lipowsky R, Sackmann E (Ed.). Structure and dynamics of membranes. Vol. 1A: From cells to vesicles. Elsevier Science, 1995.Google Scholar
  19. 19.
    Lee JC-M, Bermudez H, Discher BM, Sheehan MA, Won Y-Y, Bates FS, and Discher DE. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnology and Bioengineering 2001 a. 73: 135–145Google Scholar
  20. 20.
    Lee JC-M, Law R, and Discher DE. Bending contributions to the hydration of phospholipid and block copolymer membranes: Unifying correlations between probe fluorescence and vesicle thermoelasticity 2001b. Langmuir 17: 3592–3597.Google Scholar
  21. 21.
    Aranda-Espinoza H, Bermudez H, Bates FS, and Discher DE. Electromechanical limits of polymersomes. Physical Review Letters 2001. 87: 208301 (1–4).Google Scholar
  22. 22.
    Lee JC-M, Santore M, Bates FS, and Discher DE. From membranes to melts, Rouse to reptation: diffusion in polymersome versus lipid bilayers. Macromolecules 2002. 35: 323–326.CrossRefGoogle Scholar
  23. 23.
    Bloom M, Evans E, Mouritsen OG. Physical Properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q. Rev. Biopohys 1991. 24, 293–397.CrossRefGoogle Scholar
  24. 24.
    Kiwada H. Obara S. Nishiwaki H. Kato Y. Studies on the uptake mechanism of liposomes by perfused rat liver. I. An investigation of effluent profiles with perfusate containing no blood component. Chemical & Pharmaceutical Bulletin 1986. 34: 1249–56.CrossRefGoogle Scholar
  25. 25.
    Kiwada H. Miyajima T. Kato Y. Studies on the uptake mechanism of liposomes by perfused rat liver. II. An indispensable factor for liver uptake in serum. Chemical & Pharmaceutical Bulletin 1987. 35: 1189–95.CrossRefGoogle Scholar
  26. 26.
    Torchilin VP. Levchenko TS. Lukyanov AN. Khaw BA. Klibanov AL. Rammohan R. Samokhin GP. Whiteman KR. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochimica et Biophysica Acta 2001. 1511: 397–411.CrossRefGoogle Scholar
  27. 27.
    Nilsson K, and Mosbach K. Immobilization of ligands with organic sulfonyl chlorides. Methods in Enzymology 1984. 104: 56–69.CrossRefGoogle Scholar
  28. 28.
    Zalipsky S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjugate Chemistry 1995, 6: 150–162.CrossRefGoogle Scholar
  29. 29.
    Hong RL. Huang CJ. Tseng YL. Pang VF. Chen ST. Liu JJ. Chang FH. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clinical Cancer Research 1999. 5: 3645–52.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Dennis E. Discher
    • 1
    • 2
  • Peter Photos
    • 1
    • 2
  • Fariyal Ahmed
    • 1
    • 2
  • Ranganath Parthasrathy
    • 1
    • 2
  • Frank S. Bates
    • 1
    • 2
  1. 1.Department of Chemical and Biomolecular Engineering, Departments of Bioengineering and Mechanical Engineering and Applied Mechanics, Institute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Chemical Engineering and Material ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations