Biological Barriers for Drug Targeting

  • Vladimir R. Muzykantov


Applications of large, complex carriers that deliver powerful, specific and sensitive agents (cytokines, toxins, enzymes and genetic materials) face formidable challenges. Drug targeting strategies have to traverse diverse barriers: biological (e.g., associated with drug delivery, subcellular addressing of a drug, metabolization of carriers, etc), technological (e.g., associated with production, dosing, shelf-life of a drug-carrier complexes) and socioeconomical (e.g., price, practical utility and public accessibility of a targeting strategy).


Vascular Endothelial Growth Factor Drug Target Endothelial Barrier Biological Barrier Harmful Side Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.Edwards, A.Ben-Jebria and R.Langer (1998) Recent advances in pulmonary drug delivery using large, porous inhaled particles. J.Appl.Physiol., 84: 379–385CrossRefGoogle Scholar
  2. 2.
    M.Poznansky and R.Juliano (1984) Biological approaches to the controlled delivery of drugs: A critical review. Pharmacol. Reviews, 36 (4): 277–336Google Scholar
  3. 3.
    Y.Yabe, M.Nishikawa, A.Tamada, Y.Yakakura and M.Hashida (1999) Targeted delivery and improved therapeutic potential of catalase by chemical modification: combination with superoxide dismutase. J.Pharm.Exp.Ther., 289: 176–184Google Scholar
  4. 4.
    M.Narita, G.Bu, J.Herz and A.Schwartz (1995) Two receptor systems are involved in the plasma clearance of tissue-type plasminogen activator (t-PA) in vivo. J. Clin. Invest., 96: 1164–1168CrossRefGoogle Scholar
  5. 5.
    M. Walport (2001) Complement. New Engl.1 Med., 344: 1058–1066CrossRefGoogle Scholar
  6. 6.
    M.Medof, T.Kinoshita and V.Nussenzweig (1984) Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes J. Exp. Med., 160: 1558–1578Google Scholar
  7. 7.
    J.Szebeni (1998) The interaction of liposomes with the complement system. Crit. Rev.Ther.Drug Carrier Systems, 15: 57–88Google Scholar
  8. 8.
    V.Muzykantov and J.C.Murciano (2002) Streptavidin-mediated coupling of therapeutic proteins to carrier erythrocytes. In: Erythrocyte engineering for drug delivery and targeting (M.Maniani, Ed.), Landes Bioscience-Eurekah, TX, 37–67Google Scholar
  9. 9.
    B.Jeong, Y.Bae, D.Lee and S.Kim (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature, 388: 860–862CrossRefGoogle Scholar
  10. 10.
    A.Abuchowski, J.R.McCoy, N.C.Palczuk, T.van Es and F.F.Davis (1977) Effect of covalent attachment of polyethylene glycol on immunogenecity and circulating life of bovine liver catalase. J. Biol. Chem., 252 (11): 3852–3586Google Scholar
  11. 11.
    M.Scott, K.Murad, F.Koumpouras, M.Talbot and J.Eaton (1997) Chemical camouflage of antigenic determinants: Stealth erythrocytes. Proc. Natl. Acad. Sci. USA, 94: 7566–7571CrossRefGoogle Scholar
  12. 12.
    J.Armstrong, H.Meiselman and T.Fisher (1997) Covalent binding of poly(ethylene glycol) (PEG) to the surface of red blood cells inhibits aggregation and reduces low shear blood viscosity. Am. J. Hematol., 56: 26–28Google Scholar
  13. 13.
    P.Laverman, M.Carstens, O.Boerman, E.Dams, W.Oyen, N.Rooijen, F.Corstens and G.Storm (2001) Factors affecting the accelerated blood clearance of PEG-liposomes upon repeated injections. J.Pharm.Exp.Ther., 298: 607–612Google Scholar
  14. 14.
    CB Hansen, GY Kao, EH Moase, S Zalipsky and TM Allen (1995) Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim.Biophys.Acta. 1239: 133–44CrossRefGoogle Scholar
  15. 15.
    D.Goodwin, C.Meares and M.Osen (1998) Biological properties of biotin-chelate conjugates for pretargeted diagnosis and therapy with the avidin/biotin system. J. Nucl. Med., 39: 1813–1818Google Scholar
  16. 16.
    J.Rosenecker, W.Zhang, K.Hong, J.Lausier, P.Geppetti, S.Yoshihara, D.Papahadjopoulos and J.Nadel (1996) Increased liposome extravasation in selected tissues: effect of substance P. Proc.Nath.Acad.Sci. USA, 93: 7236–41Google Scholar
  17. 17.
    S.Vogel, R.Minshall, M.Pilipovic, C.Tiruppathi and A.Malik. Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. Am J Physiol Lung Cell Mol Physiol., 2001; 281 (6): L1512–22Google Scholar
  18. 18.
    McIntosh, D.P., X.Y.Tan, P.Oh and J.E.Schnitzer (2002) Targeting endothelium and its dynamic caveoli for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc.Natl.Acad.Sci.USA, 99: 1996–2001CrossRefGoogle Scholar
  19. 19.
    R.Jain. Transport of molecules, particles, and cells in solid tumors (1999) Annu.Rev. Biomed.Eng. 1: 241–263Google Scholar
  20. 20.
    D.Sakharov and D.Rijken (1995) Superficial accumulation of plasminogen during plasma clot lysis. Circulation, 92: 1883–1890CrossRefGoogle Scholar
  21. 21.
    V.Muzykantov (1998) Immunotargeting of drugs to the pulmonary endothelium as a therapeutic strategy. Pathophysiology, 5: 15–33CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Vladimir R. Muzykantov
    • 1
  1. 1.Department of PharmacologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations