Targeting Drugs into the Central Nervous System

  • Laszlo Prokai


Drugs face a formidable obstacle in reaching the central nervous systems (CNS) due to the existence and specific properties of the blood-brain barrier (BBB) that is a vital element in the regulation of the internal environment of the brain and the spinal cord. This chapter summarizes the principles and perspective of strategies that offer invasive and non-invasive approaches to overcome this major hurdle to the pharmacotherapy of the CNS.


Passive Transport Brain Capillary Endothelial Cell Transport Vector Therapeutic Peptide Chimeric Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prokai, Laszlo. “Peptide drug delivery into the central nervous system.” In Progress in Drug Research, Vol. 51, E.M. Jucker, ed. Basel: Birkhäuser, 1998.Google Scholar
  2. 2.
    Brightman, Milton W. “Ultrastructure of brain endothelium,” In Physiology and Pharmacology of the Blood-Brain Barrier, Michael W.B. Bradbury, ed. Berlin: Springer-Verlag, 1992.Google Scholar
  3. 3.
    Dayson, H., Welch, K., Segal, M.B., The Physiology and Pathophysiology of the Cerebrospinal Fluid, Edinburgh, UK: Churchill Livingstone, 1987; pp. 105–118.Google Scholar
  4. 4.
    Crone, Christian. “The blood-brain barrier - facts and questions.” In Ion Homeostasis of the Brain, B.K. Siesjo, S.C. Sorensen, eds. Copenhagen: Munksgaard, 1971.Google Scholar
  5. 5.
    Tamai, I., Tsuji, A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci 2000; 89: 1371–1388.CrossRefGoogle Scholar
  6. 6.
    Maness, L.M., Banks, W.A., Zadina, J.E., Kastin, A.J. Periventricular penetration and disappearance of ICV Tyr-MIF-1, DAMGO, tyrosine, and albumin. Peptides 1995; 17: 247–250.CrossRefGoogle Scholar
  7. 7.
    Pardridge, William M. Receptor-mediated peptide transport through the blood-brain barrier. Endocrine Rev 1986; 7: 314–330.CrossRefGoogle Scholar
  8. 8.
    Brownlees, J., Williams, C.H. Peptidases, peptides, and the mammalian blood-brain barrier. J Neurochem 1993; 60: 793–803.CrossRefGoogle Scholar
  9. 9.
    Tatsuta, T., Naito, M., Oh-Hara, T., Sugawara, I., Tsuruo, T. Functional involvement of P-glycoprotein in blood-brain barrier. J Biol Chem 1992; 28: 20383–20391.Google Scholar
  10. 10.
    Golden, P.L., Pardridge, W.M. Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cell Mol Neurobiol 2000; 20: 165–81CrossRefGoogle Scholar
  11. 11.
    Munsat, T.L., Taft, J., Jackson, I.M.D., Andres, P.L., Hollander, D., Skerry, L., Ordman, M., Kasdon, D., Finison, L. Intrathecal thyrotropin-releasing hormone does not alter the progressive course of ALS: Experience with an intrathecal drug delivery system. Neurology 1992; 42: 1049–1053.Google Scholar
  12. 12.
    Passaro, E., Jr., Debas, H., Oldendorf, W., Yamada, T. Rapid appearance of intraventricularly administered neuropeptides in the peripheral circulation. Brain Res 1982; 241: 335–340.CrossRefGoogle Scholar
  13. 13.
    Domb, A.J., Ringel, I. Polymeric drug carrier systems in the brain. Methods Neurosci 1994; 21: 169–183.Google Scholar
  14. 14.
    Brem, J., Domb, A.J., Lenartz, D., Dureza, C., Olivi, A., Epstein, J.I. Brain biocompatibility of a biodegradable controlled release polymer consisting of anhydride copolymer of fatty acid dimer and sebacic acid. J Controlled Release 1992; 19: 325–329.CrossRefGoogle Scholar
  15. 15.
    Krewson, C.E., Saltzman, M. W. “Targeting of proteins in the brain following release from a polymer.” In Trends and Future Perspectives in Peptide and Protein Drug Delivery, V.H.L. Lee, M. Hashida, Y. Mizushima, eds. Chur (Switzerland): Harwood Academic Publishers, 1995.Google Scholar
  16. 16.
    Mendez, A., Camarata, P.J., Suryanarayanan, R., Ebner, T.J. Sustained intracerebral delivery of nerve growth factor with biodegradable polymer microspheres. Methods Neurosci 1994; 21: 150–168.Google Scholar
  17. 17.
    Bonetti, A., Kim, S. Pharmacokinetics of an extended-release human interferon alpha-2b formulation. Cancer Chemother Pharmacol 1993; 33: 258–261.CrossRefGoogle Scholar
  18. 18.
    Lysaght, M.J., Frydel, B., Gentile, F., Emerich, D., Winn, S. Recent progress in immunoisolated cell therapy. J Cell Biochem 1994; 196–203.Google Scholar
  19. 19.
    Rapoport, Stanley I. Osmotic opening of the blood-brain barrier: Principles, mechanism, and therapeutic applications. Cell Mol Neurobiol 2000; 20: 217–30.Google Scholar
  20. 20.
    Raymond, J.J., Robertson, D.M., Dinsdale, H.B. Pharmacological modification of bradykinin induced breakdown of the blood-brain barrier. Can J Neurol Sci 1986; 13: 214–220.Google Scholar
  21. 21.
    Habgood, M.D., Begley, D.J., Abbott, N.J. Determinants of passive drug entry into the central nervous system. Cell Mol Neurobiol 2000; 20: 231–253.CrossRefGoogle Scholar
  22. 22.
    Patel, Harish M. Liposomes: bags of challenge. Biochem Soc Trans 1984; 12: 333–335.Google Scholar
  23. 23.
    Bundgaard, Hans, Design of Pro-drugs. Amsterdam: Elsevier, 1985.Google Scholar
  24. 24.
    Prokai, L., Prokai-Tatrai, K., Bodor, N. Targeting drugs to the brain by redox chemical delivery systems. Med Res Rev 2000; 20: 367–416.CrossRefGoogle Scholar
  25. 25.
    Polt, R., Porreca, F., Szabo, L.Z., Bilsky, E.J., Davis, P., Abbruscato, T.J., Davis, T.P., Horvath, R., Yamamura, H.I., Hruby, V.J. Glycopeptide enkephalin analogs produce analgesia in mice–evidence for penetration of the blood-brain-barrier. Proc Natl Acad Sci USA 1994; 91: 7114–7118.CrossRefGoogle Scholar
  26. 26.
    Rousselle, C., Clair, P., Lefauconnier, J.-M., Kaczorek, M., Scherrmann, J.-M., Temsamani, J. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 2000; 57: 679–686.Google Scholar
  27. 27.
    Pardridge, William M. Vector-mediated drug delivery to the brain. Adv Drug Deliv Rev. 1999; 36: 299–321.CrossRefGoogle Scholar
  28. 28.
    Shi, N.Y., Boado, R.J., Pardridge, W.M. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm Res 2001; 18: 1091–1095.CrossRefGoogle Scholar
  29. 29.
    Kreuter, Jörg. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001; 47: 65–81.CrossRefGoogle Scholar
  30. 30.
    Olivier, J.-C., Fenart, L., Chauvert, R., Pariat, C., Cecchelli, R., Couet, W. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 1999; 16: 1836–1842.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Laszlo Prokai
    • 1
  1. 1.Center for Drug Discovery and Department of Pharmaceutics, College of Pharmacy, and the McKnight Brain InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations