Skip to main content

Targeting Brain Trauma and Stroke

  • Chapter
  • 292 Accesses

Abstract

Acute stroke can be classified as ischemic, hemorrhagic, or both and result in the occurrence of multiple pathophysiological processes. These pathophysiological events develop over the subsequent hours to days, as the original core of the infarct develops into the surrounding penumbral area (1, 2). Initial cell death results from the deprivation of blood supply to the brain. However, a significant portion of the brain damage occurs later when secondary deleterious mechanisms come into play (2). The recent progress made in defining the mechanisms involved in the pathophysiology of stroke will probably lead to the identification of new strategies for intervention in the ischemic cascade. Therefore, it becomes increasingly important to initially consider how these new therapeutics may be delivered into the target tissue in brain and secondly to speculate on new strategies that would target ischemic brain tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dirnagl U, Iadecola, C, Moskowitz, MA, Pathobiology of ischemic stroke: an integrated view, Trends Neurosci 1999; 22: 391–397.

    Article  Google Scholar 

  2. Lee JM, Zipfel GJ, Choi DW, The changing landscape of ischemic brain injury mechanisms, Nature 1999; 399: A7 - A14.

    Article  Google Scholar 

  3. Suckling AJ, Rumsby MG, Bradbury M.W.B., Eds., The blood-brain barier in health and disease ( Ellis Horwood, Chichester,) 1986.

    Google Scholar 

  4. Brightman MW, Ultrastructure of brain endothelium. In M. W. B. Bradbury, Physiology and pharmacology of the blood-brain barrier, Springer-Verlag, Berlin, 1992: pp. 1–22.

    Chapter  Google Scholar 

  5. Pardridge W, Peptide drug delivery to the brain. ( Raven Press, New York ) 1991.

    Google Scholar 

  6. Mitic LL, Anderson JM, Molecular architecture of tight junctions. Annu. Rev. Physiol. 1998; 60: 121–142.

    Article  Google Scholar 

  7. Kroll RA, Neuwelt EA, Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means, Neurosurgery 1998; 42: 1083–1099.

    Article  Google Scholar 

  8. Pardridge W, Peptide drug delivery to the brain. J Cereb Blood Flow Metab 1997: 17; 713–731.

    Article  Google Scholar 

  9. Pardridge WM, Vector mediated drug delivery to the brain, Adv Drug Deliv Rev 1999; 36: 299–321.

    Article  Google Scholar 

  10. Muldoon LL, Pagel MA, Kroll RA, Roman-Goldstein S, Jones RS, Neuwelt EA, A physiological barrier distal to the anatomic blood-brain barrier in a model of transvascular delivery, Am J Neuroradiol 1999; 20: 217–222.

    Google Scholar 

  11. Mahoney MJ, Saltzman WM, Controlled release of proteins to tissue transplants for treatment of neurodegenerative disorders, J Pharm Sci 1996; 85: 1276–1281.

    Article  Google Scholar 

  12. Benoit JP, Faisant N, Venier-Julienne MC, Menei P, Development of microspheres for neurological disorders: basics to clinical applications, J Controlled Release 65 (2000) 285–296.

    Article  Google Scholar 

  13. Chang PL, Van Raamsdonk JM, Hortelano G, Barsoum SC MacDonald NC, Stockley TL, In vivo delivery of heterologous proteins by microencapsulated recombinant cells, Trends Biotechnology 1999; 17: 78–83.

    Article  Google Scholar 

  14. Yan Q, Matheson C, Sun J, Radeke MJ, Feinstein SC, Miller JA, Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with Trk receptor expression, Exp Neurol 1994; 127: 23–36.

    Article  Google Scholar 

  15. Kuroiwa T, Ting P, Martinez H, Klatzo I, The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion, Acta Neuropathol 1985; 68: 122–129.

    Article  Google Scholar 

  16. Jones TH, Morawetz RB, Crowell RM, Marcoux FW, Fitzgibbon SJ, De Girolami U, Ojemann RG, Threshold of focal cerebral ischemia in awake monkeys, J Neurosurg 1981; 54: 773–782.

    Article  Google Scholar 

  17. Kraig RP, Petito CK, Plum F, Pulsinelli WA, Hydrogen ions kill at concentrations reached in ischemia. J Cereb Blood Flow Metab 1987; 7: 379–386.

    Article  Google Scholar 

  18. Mun-Bryce S, Rosenberg GA, Matrix metalloproteinases in cerebrovascular disease, J Cereb Blood Flow Metab 1998; 18: 1163–1172.

    Article  Google Scholar 

  19. Peng KW, Morling FJ, Cosset FL, Murphy G, Russell SJ, A gene delivery system activatable by disease-associated matrix metalloproteinases. Hum Gene Ther 1997; 8: 729783.

    Google Scholar 

  20. Maysinger D, Morinville A, Drug delivery to the nervous system. Trends Biotechnol 1997; 15: 410–418.

    Article  Google Scholar 

  21. Imaizumi S, Woolworth V, Fishman RA, Chan PH, Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats. Stroke 1990; 21: 1312 1317.

    Google Scholar 

  22. Stanimirovic DB, Markovic M, Micic DV, Spatz M, Mrsulja BB, Liposome-entrapped superoxide dismutase reduces ischemia/reperfusion oxidative stress in gerbil brain. Neurochem Res 1994; 19: 1473–1478.

    Article  Google Scholar 

  23. Khaw BA, Torchilin VP, Vural I, Narula J, Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nat Med 1995; 1: 1195–1198.

    Article  Google Scholar 

  24. Torchilin VP, Narula J, Halpern E, Khaw BA, Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposome: factors influencing targeted accumulation in the infarcted myocardium. Biochim Biophys Acta 1996; 1279: 75–83.

    Article  Google Scholar 

  25. Glorioso, JC, Goins WF, Meaney CA, Fink DJ, DeLuca NA, Gene transfer to brain using herpes simplex virus vectors. Ann Neurol 1994; 35 Suppl: S28–S34.

    Article  Google Scholar 

  26. Lawrence MS, Sun GH, Kunis DM, Saydam TC, Dash R, Ho DY, Sapolsky RM, Steinberg GK, Overexpression of the glucose transporter gene with a herpes simplex viral vestor protects striatal neurones against stroke. J Cereb Blood Flow Metab 1996; 16: 18 1185.

    Google Scholar 

  27. Yenari MA, Minami M, Sun GH, Meier Ti, Kunis DM, McLauglin JR, Ho DY, Sapolsky RM, Steinberg GK, Calbindin d28k Over-expression protects striatal neurones from transient focal cerebral ischemia. Stroke 2001; 32: 1028–1035.

    Article  Google Scholar 

  28. Hoehn B, Ringer, TM, WU L, Giffard RG, Sapolsky RM, Steinberg GK, Yenari MA, Overexpression of HSP72 after induction of experimental stroke protects neurones from ischemic damage. J. Cereb Blood Flow Metab. 2001; 21: 1303–1309.

    Article  Google Scholar 

  29. Linnick MD, Zahos P, Geschwnd MD, Federhoff HJ, Expression of bc1–2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke 1995; 26: 1670–1674.

    Article  Google Scholar 

  30. Phillips RG, Lawrence MS, Ho DY, Sapolsky RM, Limitations in the neuroprotective potential of gene therapy with BCL-2. Brain Res 2000; 859: 202–206.

    Article  Google Scholar 

  31. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF, In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science 1999; 285: 1569–1572.

    Article  Google Scholar 

  32. Jansen EM, Solberg L, Underhill S, Wilson S, Cozzari C, Hartman BK, Faris PL, Low WC, Transplantation of fetal neocortex ameliorates sensorimotor and locomotor deficits following neonatal ischemic-hypoxic brain injury in rats. Exp Neurol 1997; 147: 487–497.

    Article  Google Scholar 

  33. Li Y, Chen J, Chopp M, Adult bone marrow transplantation after stroke in adult rats. Cell Transplantation 2001; 10: 31–40.

    Google Scholar 

  34. Li Y, Chen J, Wang L, Lu M, Chopp M, Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 2001; 56: 1666–1672.

    Article  Google Scholar 

  35. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M, Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32: 1005–1011.

    Article  Google Scholar 

  36. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M, Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001; 32: 2682–2688.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petty, M.A., Lo, E.H. (2002). Targeting Brain Trauma and Stroke. In: Muzykantov, V., Torchilin, V. (eds) Biomedical Aspects of Drug Targeting. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4627-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4627-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5312-4

  • Online ISBN: 978-1-4757-4627-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics