The Trichomonad Hydrogenosome

  • Sabrina D. Dyall
  • Patricia J. Johnson


Trichomonads are deep-branching protists that are thought to be early-diverging eukaryotes (Sogin, 1991). These organisms belong to the phylum Parabasalia which encompasses both non-parasitic and parasitic trichomonads. The two best studied parasitic trichomonads are the cattle-infective parasite, Tritrichomonas foetus and the human-infective parasite, Trichomonas vaginalis. These parasites are flagellated, extracellular organisms that are sexually transmitted and reside in the urogenital tracts of their hosts. Over 150 million cases of human trichomoniasis are reported each year and significant financial losses are frequently suffered due to trichomoniasis in cattle, making these parasites important in both the medical and agricultural communities. Aside from their medical and agricultural importance, a number of unusual biochemical properties of Trichomonas have captured the attention of scientists. The appeal of trichomonads from a biological viewpoint stems, in large part, from properties that reflect both their primitive nature and parasitic lifestyle. For example, trichomonads lack two organelles typically found in eukaryotes, the mitochondrion and the peroxisome, but instead contain an organelle involved in carbohydrate metabolism called the hydrogenosome.


Heat Shock Protein Leader Sequence Adenylate Kinase Leader Peptide Anaerobic Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhmanova, A., Voncken, F., van Alen, T., van Hoek, A., Boxma, B., Vogels, G., Veenhuiss, M., and Hackstein, J. H. P. (1998). A hydrogenosome with a genome. Nature 396, 527–528.PubMedCrossRefGoogle Scholar
  2. Benchimol, M., Almeida, J. C., and de Souza, W. (1996). Further studies on the organization of the hydrogenosome in Tritrichomonas foetus. Tissue Cell 28, 287–99.PubMedCrossRefGoogle Scholar
  3. Benchimol, M., Johnson, P. J., and deSouza, W. (1996). Morphogenesis of the hydrogenosome: An ultrastructural study. Bio. Cell 87, 197–205.Google Scholar
  4. Biagini, G. A., Finlay, B. J., and Lloyd, D. (1997). Evolution of the hydrogenosome. Ferns Microbiol. Lett. 155, 133–140.Google Scholar
  5. Biagini, G. A., vanderGiezen, M., Hill, B., Winters, C., and Lloyd, D. (1997). Ca2+ accumulation in the hydrogenosomes of Neocallimastix frontalis L2: A mitochondriallike physiological role. Ferns Microbiol. Lett. 149, 227–232.Google Scholar
  6. Bozner, P. (1997). Immunological detection and subcellular localization of Hsp70 and Hsp60 homologs in Trichomonas vaginalis. J. Parasitol. 83, 224–9.PubMedCrossRefGoogle Scholar
  7. Bradley, P. J., Lahti, C. J., Plumper, E., and Johnson, P. J. (1997). Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J. 16, 3484–93.PubMedCrossRefGoogle Scholar
  8. Brondijk, T. H., Durand, R., van der Giezen, M., Gottschal, J. C., Prins, R. A., and Fèvre, M. (1996). scsB, a cDNA encoding the hydrogenosomal beta subunit of succinyl-CoA synthetase from the anaerobic fungus Neocallimastix frontalis. Mol. Gen. Genet. 253, 315–23.Google Scholar
  9. Brui, S., Veltman, R. H., Lombardo, M. C., and Vogels, G. D. (1994). Molecular cloning of hydrogenosomal ferredoxin cDNA from the anaerobic amoeboflagellate Psalteriomonas lanterna. Biochim. Biophys. Acta 1183, 544–6.CrossRefGoogle Scholar
  10. Bui, E. T., and Johnson, P. J. (1996). Identification and characterization of [Fe]-hydrogenasesGoogle Scholar
  11. in the hydrogenosome of Trichomonas vaginalis. Mol. Biochem. Parasitol. 76,305–10. Bui, E. T. N., Bradley, P. J., and Johnson, P. J. (1996). A common evolutionary origin for mitochondria and hydrogenosomes. Proc. Nat. Acad. Sci. USA 93,9651–9656.Google Scholar
  12. Carafoli, E. (1987). Intracellular calcium homeostasis. Annu. Rev. Biochem. 56, 395–433.Google Scholar
  13. Cavalier-Smith, T. (1987). The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann. N Y Acad. Sci. 503, 55–71.PubMedCrossRefGoogle Scholar
  14. Clark, C. G., and Roger, A. J. (1995). Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc. Natl. Acad. Sci. USA 92, 6518–21.PubMedCrossRefGoogle Scholar
  15. Delgadillo, M. G., Liston, D. R., Niazi, K., and Johnson, P. J. (1997). Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 94, 4716–20.PubMedCrossRefGoogle Scholar
  16. Doolittle, W. F. (1998). A paradigm gets shifty [news; comment]. Nature 392, 15–6.PubMedCrossRefGoogle Scholar
  17. Embley, T. M., and Hirt, R. P. (1998). Early branching eukaryotes ? Curr. Opin. Genet. Dev. 8, 624–9.PubMedCrossRefGoogle Scholar
  18. Finlay, B. J., and Fenchel, T. (1989). Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol. Lett. 65, 311–314.Google Scholar
  19. Fujiki, Y., Hubbard, A. L., Fowler, S., and Lazarow, P. B. (1982). Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell. Biol. 93, 97–102.PubMedCrossRefGoogle Scholar
  20. Germot, A., Philippe, H., and Le Guyader, H. (1997). Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol. Biochem. Parasitol. 87, 159–68.PubMedCrossRefGoogle Scholar
  21. Germot, A., Philippe, H., and Le Guyader, H. (1996). Presence of a mitochondrial-type 70kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc. Natl. Acad. Sci. USA 93, 14614–7.PubMedCrossRefGoogle Scholar
  22. Glaser, E., Sjöling, S., Tanudji, M., and Whelan, J. (1998). Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol. Biol. 38, 3 1138.Google Scholar
  23. Gray, M. W., Burger, G., and Lang, B. F. (1999). Mitochondrial evolution. Science 283, 147681Google Scholar
  24. Gupta, R. S., and Golding, G. B. (1996). The origin of the eukaryotic cell [see comments]. Trends Biochem. Sci. 21, 166–71.Google Scholar
  25. Hausier, T., Stierhof, Y. D., Blattner, J., and Clayton, C. (1997). Conservation of mitochondria] targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas. Eur. J. Cell Biol. 73, 240–251.Google Scholar
  26. Heins, L., and Soll, J. (1998). Chloroplast biogenesis: mixing the prokaryotic and the eukaryotic ? Curr. Biol. 8, R215–7.PubMedCrossRefGoogle Scholar
  27. Hendrick, J. P., Hodges, P. E., and Rosenberg, L. E. (1989). Survey of amino-terminal proteolytic cleavage sites in mitochondrial precursor proteins: leader peptides cleaved by two matrix proteases share a three-amino acid motif. Proc. Natl. Acad. Sci. USA 86, 4056–60.PubMedCrossRefGoogle Scholar
  28. Honigberg, B. M., Volkmann, D., Entzeroth, R., Scholtyseck, E. (1984). A freeze-fracture electron microscopy study of Trichomonas vaginalis Donne and Tritrichomonas foetus (Riedmuller). J. Protozool. 31, 116–131.PubMedGoogle Scholar
  29. Horner, D. S., Hirt, R. P., Kilvington, S., Lloyd, D., and Embley, T. M. (1996). Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc. R. Soc. Lond. B Biol. Sci. 263, 1053–9.CrossRefGoogle Scholar
  30. Hrdy, I., and Müller, M. (1995). Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J. Mol. Evol. 41, 388–96.PubMedCrossRefGoogle Scholar
  31. Hrdy, I., and Muller, M. (1995). Primary structure of the hydrogenosomal malic enzyme of Trichomonas vaginalis and its relationship to homologous enzymes. J. Eukaryot. Microbiol. 42, 593–603.PubMedCrossRefGoogle Scholar
  32. Humphreys, M. J., Ralphs, J., Dun-ant, L., and Lloyd, D. (1994). Hydrogenosomes in trichomonads are calcium stores and have a transmembrane electrochemical potential. Biochem. Soc. Trans. 22, 324S.PubMedGoogle Scholar
  33. Jenkins, T. M., Gorrell, T. E., Müller, M., and Weitzman, P. D. (1991). Hydrogenosomal succinate thiokinase in Tritrichomonas foetus and Trichomonas vaginalis. Biochem. Biophys. Res. Commun. 179, 892–6.PubMedCrossRefGoogle Scholar
  34. Johnson, P. J., Bradley, P. J., and Lahti, C. J. (1995). Cell biology of trichomonads: protein targeting to the hydrogenosome. In Molecular Approaches to Parasitology, J. C. Boothroyd and R. Komuniecki, eds. ( New York: Wiley-Liss, Inc. ), pp. 399–411.Google Scholar
  35. Johnson, P. J., d’ Oliveira, C. E., Gorrell, T. E., and Müller, M. (1990). Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 87, 6097–101.PubMedCrossRefGoogle Scholar
  36. Johnson, P. J., Lahti, C. J., and Bradley, P. J. (1993). Biogenesis of the hydrogenosome in the anaerobic protist Trichomonas vaginalis. J. Parasitol. 79, 664–70.PubMedCrossRefGoogle Scholar
  37. Keller, G. A., Krisans, S., Gould, S. J., Sommer, J. M., Wang, C. C., Schliebs, W., Kunau, W., Brody, S., and Subramani, S. (1991). Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes. J. Cell Biol. 114, 893–904.PubMedCrossRefGoogle Scholar
  38. Lahti, C. J., Bradley, P. J., and Johnson, P. J. (1994). Molecular characterization of the alpha-subunit of Trichomonas vaginalis hydrogenosomal succinyl CoA synthetase. Mol. Biochem. Parasitol. 66, 309–18.PubMedCrossRefGoogle Scholar
  39. Lahti, C. J., d’ Oliveira, C. E., and Johnson, P. J. (1992). Beta-succinyl-coenzyme-a synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J. Bacteriol. 174, 68226830.Google Scholar
  40. Lahti, C. J., and Johnson, P. J. (1991). Trichomonas vaginalis hydrogenosomal proteins are synthesized on free polyribosomes and may undergo processing upon maturation. Mol. Biochem. Parasitol. 46, 307–10.Google Scholar
  41. Lake, J. A., and Rivera, M. C. (1994). Was the nucleus the first endosymbiont? [comment]. Proc. Natl. Acad. Sci. USA 91, 2880–1.PubMedCrossRefGoogle Scholar
  42. Lange, S., Rozario, C., and Muller, M. (1994). Primary structure of the hydrogenosomal adenylate kinase of Trichomonas vaginalis and its phylogenetic relationships. Mol. Biochem. Parasitol. 66, 297–308.PubMedCrossRefGoogle Scholar
  43. Mai, Z., Ghosh, S., Frisardi, M., Rosenthal, B., Rogers, R., and Samuelson, J. (1999). Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol. Cell Biol. 19, 2198205.Google Scholar
  44. Martin, W., and Müller, M. (1998). The hydrogen hypothesis for the first eukaryote [see comments]. Nature 392, 37–41.PubMedCrossRefGoogle Scholar
  45. Marvin-Sikkema, F. D., Lahpor, G. A., Kraak, M. N., Gottschal, J. C., and Prins, R. A. (1992). Characterization of an anaerobic fungus from llama faeces. J. Gen. Microbiol. 138, 2235–41.PubMedCrossRefGoogle Scholar
  46. Marvinsikkema, F. D., Kraak, M. N., Veenhuis, M., Gottschal, J. C., and Prins, R. A. (1993). The hydrogenosomal enzyme hydrogenase from the anaerobic fungus Neocallimastix sp L2 is recognized by antibodies directed against the C-terminal microbody protein targeting signal SKL. Eur. J. Cell Biol. 61, 86–91.Google Scholar
  47. Müller, M. (1980). The hydrogenosome. In The Eukaryotic Microbial Cell, G. W. Gooday, LLoyd, D. and Trinci, A.P.J., ed. ( Cambridge: Cambridge University Press ), pp. 127–142.Google Scholar
  48. Müller, M. (1993). The hydrogenosome. J Gen Microbiol 139, 2879–89.PubMedCrossRefGoogle Scholar
  49. Paltauf, F., and Meingassner, J. G. (1982). The absence of cardiolipin in hydrogenosomes of Trichomonas vaginalis and Tritrichomonas foetus. J. Parasitol. 68, 949–50.PubMedCrossRefGoogle Scholar
  50. Pfanner, N., Craig, E. A., and Hönlinger, A. (1997). Mitochondrial preprotein translocase. Annu. Rev. Cell. Dev. Biol. 13, 25–51.PubMedCrossRefGoogle Scholar
  51. Roger, A. J., Clark, C. G., and Doolittle, W. F. (1996). A possible mitochondria] gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 93, 14618–22.PubMedCrossRefGoogle Scholar
  52. Roger, A. J., Svärd, S. G., Tovar, J., Clark, C. G., Smith, M. W., Gillin, F. D., and Sogin, M. L. (1998). A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc. Natl. Acad. Sci. USA 95, 229–34.PubMedCrossRefGoogle Scholar
  53. Schatz, G., and Dobberstein, B. (1996). Common principles of protein translocation across membranes. Science 271, 1519–26.PubMedCrossRefGoogle Scholar
  54. Sogin, M. L. (1991). Early evolution and the origin of eukaryotes. Curr. Opin. Genet. Dev. 1, 457–63.PubMedCrossRefGoogle Scholar
  55. Tovar, J., Fischer, A. & Clark, G. C. (1999). The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol. Microbiol. 32, 1013-1021.Google Scholar
  56. van der Giezen, M., Rechinger, K. B., Svendsen, I., Durand, R., Hirt, R. P., Fèvre, M., Embley, T. M., and Prins, R. A. (1997). A mitochondrial-like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria. Mol. Microbiol. 23, 11–21.PubMedCrossRefGoogle Scholar
  57. vanderGiezen, M., Kiel, J., Sjollema, K. A., and Prins, R. A. (1998). The hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis is targeted to mitochondria of the methylotrophic yeast Hansenula polymorpha. Curr. Genetics 33, 131–135.Google Scholar
  58. vanderGiezen, M., Sjollema, K. A., Artz, R. R. E., Alkema, W., and Prins, R. A. (1997). Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett. 408, 147–150.CrossRefGoogle Scholar
  59. von Heijne, G., Steppuhn, J., and Hellmann, R. G. (1989). Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180, 535–45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Sabrina D. Dyall
    • 1
  • Patricia J. Johnson
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations