Toxoplasma as a Model Apicomplexan Parasite: Biochemistry, Cell Biology, Molecular Genetics, Genomics and Beyond

  • David S. Roos
  • John A. Darling
  • Mary G. Reynolds
  • Kristin M. Hager
  • Boris Striepen
  • Jessica C. Kissinger


More than twenty years ago, virologist Elmer Pfefferkorn recognised that the plaques formed following infection of mammalian host cell monolayers with the protozoan parasite Toxoplasma gondii should permit clonal isolation. Seeking to develop a genetic system suitable for the analysis of this intracellular pathogen, Pfefferkorn and his colleagues produced various mutant parasite lines. Carrying out classical genetic crosses (in cats, the definitive host for T. gondii), they demonstrated that tachyzoites are haploid, and that Mendelian segregation occurs through meiotic production of sporozoites within the oocyst (Pfefferkorn and Pfefferkorn, 1980). These investigators also exploited the ability of T. gondii to infect virtually any nucleated cell to develop somatic cell genetic approaches, infecting defined mammalian cell mutants to determine what wild-type and mutant parasites can do for themselves, and what they require from their host (Pfefferkorn et al., 1983).


Insertional Mutagenesis Toxoplasma Gondii Apicomplexan Parasite Green Fluorescent Protein Reporter Adenine Arabinoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajioka, J., Boothroyd, J.C., Brunk, B.P., Hehl, A., Hillier, L., Manger, I.D., Overton, G.C., Marra, M., Roos, D.S., Wan, K.L., Waterston, R., & Sibley, L.D. (1998). Gene discovery by EST sequencing in Toxoplasma gondii reveals sequences restricted to the apicomplexa. Genome Res. 8, 18–28.PubMedGoogle Scholar
  2. Beckers, C.J.M., Roos, D.S., Donald, R.G.K., Luft, B.J., Schwab, J.C., Cao, Y., & Joiner, K.A. (1995). Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii: Implications for the target of macrolide antibiotics. J. Clin. Invest. 95, 367–376.PubMedCrossRefGoogle Scholar
  3. Black, M.W., & Boothroyd. J.C. (1998). Development of a stable episomal shuttle vector for Toxoplasma gondii. J. Biol. Chem. 273, 3972–3979.PubMedCrossRefGoogle Scholar
  4. Blanchard, J.L., & Hicks, J.S. (1999). The non-photosynthetic plastid in malaria parasites and other apicomplexans is derived from outside the green plastid lineage. J. Eukaryot. Microbiol. 46, 367–375.PubMedCrossRefGoogle Scholar
  5. Bodyl, A. (1997). Mechanism of protein targeting to the chlorarachniophyte plastids and the evolution of complex plastids with four membranes: A hypothesis. Botan. Acta 110, 395–400.Google Scholar
  6. Boothroyd, J.C., Kim, K., Pfefferkorn, E.R., Sibley, L.D., & Soldati. D. (1994). Forward and reverse genetics in the study of the obligate intracellular parasite Toxoplasma gondii. Methods Mol. Genet. 3, 1–29.Google Scholar
  7. Bowman, S., Lawson, D., Basham, D., Brown, D., Chillingworth, T., Churcher, C.M., Craig, A., Davies, R.M., Devlin, K., Feltwell, T., Gentles, S., Gwilliam, R., Hamlin, N., Harris, D., Holroyd, S., Hornsby, T., Horrocks, P., Jagels, K., Jassal, B., Kyes, S., McLean, J., Moule, S., Mungall, K., Murphy, L., Oliver, K., Quail, M.A., Rajendream, M.-A., Rutter, S., Skelton, J., Squares, R., Squares, S., Sulston, J.E., Whitehead, S., Woodward, J.R., Newbold, C., & Barrell, B.G. (1999). The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature 400, 532–538.PubMedCrossRefGoogle Scholar
  8. Carter, D., Donald, R.G.K., Roos, D.S., & Ullman, B. (1997). Expression, purification, and characterization of uracil phosphoribosyltransferase from Toxoplasma gondii Mol. Biochem. Parasitol. 87, 137–144.CrossRefGoogle Scholar
  9. Chaturvedi, S., Qi, H., Coleman, D., Rodriguez, A., Hanson, P.S., Striepen, B., Roos, D.S., & Joiner, K.A. (1999). Constitutive calcium independent release of Toxoplasma gondii dense granules occurs through the NSF/SNAP/SNARE/Rab machinery. J. Biol. Chem. 274, 2424–2431.PubMedCrossRefGoogle Scholar
  10. Chiang, C.-W., Carter, N., Sullivan, W.J., Jr., Donald, R.G.K., Roos, D.S., Naguib, F.N.M., el Kouni, M.H., Ullman, B., & Wilson, C.M. (1999). The adenosine transporter of Toxoplasma gondii: Identification by insertional mutagenesis, cloning and recombinant expression. J. Biol. Chem., in press.Google Scholar
  11. Crabb, B.S., Triglia. T., Waterkeyn, J.G., & Cowman, A.F. (1997). Stable transgene expression in Plasmodium falciparum. Mol. Biochem. Parasitol. 90, 131–144.Google Scholar
  12. Darling, J., Sullivan, W.J., Jr., Carter, D., Ullman, B., & Roos, D.S. (1999). Recombinant expression, purification, and characterization of Toxoplasma gondii adenosine kinase. Mol. Biochem. Parasitol. 103, 15–23.PubMedCrossRefGoogle Scholar
  13. Donald, R.G.K., & Roos, D.S. (1994). Homologous recombination and gene replacement at the dihydrofolate reductase/thymidylate synthase locus in Toxoplasma gondii. Mol. Biochem. Parasitol. 63, 243–253.PubMedCrossRefGoogle Scholar
  14. Donald, R.G.K., & Roos, D.S. (1995). Insertional mutagenesis in a protozoan parasite: Direct cloning of the uracil phosphoribosyl transferase gene from Toxoplasma gondii. Proc. Nat’l Acad. Sci. U.S.A. 92, 5749–5753.PubMedCrossRefGoogle Scholar
  15. Donald, R.G.K., & Roos, D.S. (1998). Gene knock-outs and allelic replacements in Toxoplasma gondii: HXGPRT as a selectable marker for hit-and-run mutagenesis. Mol. Biochem. Parasitol. 91, 295–305.PubMedCrossRefGoogle Scholar
  16. Donald, R.G.K., Carter, D., Ullman, B., & Roos, D.S. (1996). Insertional tagging, cloning and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyl transferase gene: Use as a selectable marker for stable transformation. J. Biol. Chem. 271, 14010–14019.PubMedCrossRefGoogle Scholar
  17. Elmendorf, H.G., & Haldar, K. (1993). Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. EMBO Journal. 12, 4763–73.PubMedGoogle Scholar
  18. Falkow, S. (1988) Molecular Koch’s postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10 suppl. 2, S274–276.Google Scholar
  19. Feagin, J.E. (1994). The extrachromosomal DNAs of apicomplexan parasites. Annu. Rev. Microbiol. 48, 81–104.PubMedCrossRefGoogle Scholar
  20. Fichera, M.E., & Roos, D.S. (1997). A plastid organelle as a drug target in apicomplexan parasites. Nature 389, 407–409.Google Scholar
  21. Fichera, M.E., Bhopale, M.K., & Roos, D.S. (1995). In vitro assays elucidate the peculiar mechanism of macrolide/lincosamide action against Toxoplasma gondii. Antimicr. Agents Chemother. 39, 1530–1537.CrossRefGoogle Scholar
  22. Gardner, M.J., Tettelin, H., Carucci, D.J., Cummings, L.M., Aravind, L., Koonin, E.V., Shallom, S., Mason, T., Yu, K., Fujii, C., Pederson, J., Shen, K., Jing, J., Aston, C., Lai, Z., Schwartz, D.C., Pertea, M., Salzberg, S., Zhou, L., Sutton, G.G., Clayton, R., White, O., Smith, H.O., Fraser, C.M., Adams, M.D., Ventner, J.C., Hoffman, S.L. (1998). Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282, 1126–1132.PubMedCrossRefGoogle Scholar
  23. Hager, K.M., Striepen, B., Tilney, L.G., & Roos, D.S. (1999). The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii. J. Cell Sci. 112, 2631–2638.PubMedGoogle Scholar
  24. Haldar, K. (1998). Intracellular trafficking in Plasmodium-infected erythrocytes. Curr. Opin. Microbiol. 1, 466–71.PubMedCrossRefGoogle Scholar
  25. Hitchings, G.H., ed. (1983). Inhibition of Folate Metabolism in Chemotherapy. Springer-Verlag, Berlin.Google Scholar
  26. Hyde, J.E. (1990). The dihydrofolate reductase-thymidylate synthase gene in the drug resistance of malaria parasites. Pharmacol. Ther. 48, 45–59.PubMedCrossRefGoogle Scholar
  27. Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., Türbachova, I., Eberl, M., Zeidler, J., Lichtenthaler, H.K., Soldati, D., and Beck, E. (1999). Inhibitors of the Non-mevalonate Pathway of Isoprenoid Biosynthesis as Antimalarial Drugs. Science 285, 1573–1576.PubMedCrossRefGoogle Scholar
  28. Köhler, S., Delwiche, C.F., Denny, P.W., Tilney, L.G., Webster, P., Wilson, R.J.M., Palmer, J.D., & Roos, D.S. (1997). A plastid of probable green algal origin in apicomplexan parasites. Science 275, 1485–1488.PubMedCrossRefGoogle Scholar
  29. Knoll, L.J., & Boothroyd, J.C. (1998). Isolation of developmentally regulated genes from Toxoplasma gondii by a gene trap with the positive and negative selectable marker hypoxanthine-xanthine-guanine phosphoribosyltransferase. Mol. Cell. Biol. 18, 807814.Google Scholar
  30. Krug, E.C., Man, J.J., & Berens, R.L. (1989) Purine metabolism in Toxoplasma gondii. J. Biol. Chem. 264, 10601–10607.PubMedGoogle Scholar
  31. Martin, W., Stoebe, B., Goremykin, V., Hansmann, S., Hasegawa, M., & Kowallik, K.V. (1998). Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393, 162–165.PubMedCrossRefGoogle Scholar
  32. McFadden, G.I. (1999). Plastids and protein targeting. J. Eukaryot. Microbiol. 46, 339–346. McFadden, G.I., & Roos, D.S. (1999). Apicomplexan plastids as drug targets. Trends Microbiol. 7, 328–333.Google Scholar
  33. McFadden, G.I., Reith, M.E., Mulholland, J., & Lang-Unnasch, N. (1996). Plastid in human parasites. Nature 381, 482.PubMedCrossRefGoogle Scholar
  34. McFadden, G.I., Waller, R.F., Reith, M.E., & Lang-Unnasch, N. (1997). Plastids in apicomplexan parasites. In: Origins of Algae and their Plastids, Bhattacharya, D., ed. Springer-Verlag, Vienna, New York; pp. 261–287.CrossRefGoogle Scholar
  35. Nakaar, V., Samuel, B.U., Ngo, E.O., & Joiner K.A. (1999). Targeted reduction of nucleoside triphosphate hydrolase by antisense RNA inhibits Toxoplasma gondii proliferation. J. Biol. Chem. 274, 5083–5087.PubMedCrossRefGoogle Scholar
  36. Palmer, J.D., & Delwiche, C.F. (1996). Second-hand chloroplasts and the case of the disappearing nucleus. Proc. Nat’l Acad. Sci. U.S.A. 93, 7432–7435.PubMedCrossRefGoogle Scholar
  37. Pfefferkorn, E.R. (1977). Toxoplasma gondii: The enzymic defect of a mutant resistant to 5fluorodeoxyuridine. Exper. Parasitol. 44, 26–35.Google Scholar
  38. Pfefferkorn, E.R. (1988). Toxoplasma gondii as viewed from a virological perspective. In: The Biology of Parasitism, Englund, P.T., & Sher, A., eds. Alan R. Liss, New York. MBL Lect. Biol. 9, 479–501.Google Scholar
  39. Pfefferkorn, E.R., & Borotz, S.E. (1994). Toxoplasma gondii: characterization of a mutant resistant to 6-thioxanthine. Exper. Parasitol. 79, 374–382.Google Scholar
  40. Pfefferkorn, E.R., & Pfefferkorn, L.C. (1976). Arabinosyl nucleosides inhibit Toxoplasma Google Scholar
  41. gondii and allow the selection of resistant mutants. J. Parasitol. 62,993–999. Pfefferkorn, E.R., & Pfefferkorn, L.C. (1977). Toxoplasma gondii: Characterization of aGoogle Scholar
  42. mutant resistant to 5-fluorodeoxyuridine. Exper. Parasitol. 42, 44–55.Google Scholar
  43. Pfefferkorn, E.R., & Pfefferkorn, L.C. (1978). The biochemical basis for resistance to adenine arabinoside in a mutant of Toxoplasma gondii. J. Parasitol. 64, 486–492.PubMedCrossRefGoogle Scholar
  44. Pfefferkorn, E.R., & Pfefferkorn, L.C. (1980). Toxoplasma gondii: genetic recombination between drug resistant mutants. Exper. Parasitol. 50, 305–316.Google Scholar
  45. Pfefferkorn, E.R., Schwartzman, J.D., & Kasper, L.H. (1983). Toxoplasma gondii: use of mutants to study the host-parasite relationship. Ciba Fdn. Symp. 99, 74–91.Google Scholar
  46. Pfefferkorn, E.R., Nothnagel, R.F., & Borotz, S.E. (1992). Parasiticidal effect of clindamycin on Toxoplasma gondii grown in cultured cells and selection of a drug-resistant mutant. Antimicr. Agents Chemother. 31, 1091–1096.CrossRefGoogle Scholar
  47. Plowe, C., Kublin, J., & Doumbo, O. (1998). P. falciparum DHFR and DHPS mutations: epidemiology and role in clinical resistance to antifolates. Drug Resistance Updates 1, 389–396.Google Scholar
  48. Reynolds, M.G., & Roos, D.S. (1998). A biochemical and genetic model for parasite resistance to antifolates. Toxoplasma gondii provides insights into pyrimethamine and cycloguanil resistance in Plasmodium falciparum. J. Biol. Chem. 273, 3461–3469.PubMedCrossRefGoogle Scholar
  49. Roos, D.S., Donald, R.G.K., Morrissette, N.S., & Moulton, A.L.C. (1994). Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol. 45, 27–63.PubMedCrossRefGoogle Scholar
  50. Roos, D.S., Sullivan, W.J., Jr., Striepen, B., Bohne, W., & Donald, R.G.K. (1997). Tagging genes and trapping promoters in Toxoplasma gondii by insertional mutagenesis. Methods 13, 112–122.PubMedCrossRefGoogle Scholar
  51. Roos, D.S., Crawford, M.J., Donald, R.G.K., Fohl, L.M., Hager, K.M., Kissinger, J.C., Reynolds, M.G., Striepen, B., & Sullivan, W.J., Jr. (1999a). Transport and trafficking: Toxoplasma as a model for Plasmodium. Novartis Fdn. Symp. 226, 176–198.Google Scholar
  52. Roos, D.S., Crawford, M.J., Donald, R.G.K., Kissinger, J.C., Klimczak, L.J., & Striepen, B. (1999b). Origins, targeting, and function of the apicomplexan plastid. Curr. Opin. Microbiol. 2, 426–432.PubMedCrossRefGoogle Scholar
  53. Schatz, G., & Dobberstein, B. (1996). Common princiles of protein translocation across membranes. Science 278, 1467–1470.Google Scholar
  54. Schumacher, M.A., Carter, D., Roos, D.S., Ullman, B., & Brennan, R.G. (1996). Crystal structures of Toxoplasma gondii HXGPRTase reveal the catalytic role of a long flexible loop. Nature (Struct. Biol.). 3, 881–887.CrossRefGoogle Scholar
  55. Schumacher, M.A., Carter, D., Scott, D.M., Roos, D.S., Ullman, B., & Brennan, R.G. (1998). Crystal structures of Toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic structure of pyrimidine discrimination and prodrug binding. EMBO J. 17, 3219–3232.PubMedCrossRefGoogle Scholar
  56. Schwab, J.C., Beckers, C.J.M., & Joiner, K.A. (1994). The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proc. Nat’l Acad. Sci. U.S.A. 91, 509–513.PubMedCrossRefGoogle Scholar
  57. Schwab, J.C., Afifi, M.A., Pizzorno, G., Handschumacher, R.E., & Joiner, K.A. (1995). Toxoplasma gondii tachyzoites possess an unusual plasma membrane adenosine transporter. Mol. Biochem. Parasitol. 70, 59–69.Google Scholar
  58. Schwartzbach, S.D., Osafune, T., & Löffelhardt, W. (1998). Protein import into cyanelles and complex chloroplasts. Plant Mol. Biol. 38, 247–263.Google Scholar
  59. Schwartzman, J.D., & E.R. Pfefferkorn. 1981. Pyrimidine synthesis by intracellular Toxoplasma gondii. J. Parasitol. 67, 150–158.PubMedCrossRefGoogle Scholar
  60. Schwartzman, J.D., & E.R. Pfefferkorn. 1982. Toxoplasma gondii: Purine synthesis and salvage in mutant host cells and parasites. Exper. Parasitol. 53, 77–86.Google Scholar
  61. Siddall, M.E. (1992). Hohlzylinders. Parasitol. Today 8, 90–91.PubMedCrossRefGoogle Scholar
  62. Sirawaraporn, W., Sathitkul, T., Sirawaraporn, R., Yuthavong, Y., & Santi, D.V. (1997). Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc. Nat’l Acad. Sci. U.S.A. 94, 1124–1129.PubMedCrossRefGoogle Scholar
  63. Soldati, D. (1999). The apicoplast as a potential therapeutic target in Toxoplasma and other Apicomplexan parasites. Parasitol. Today 15, 5–7.Google Scholar
  64. Striepen, B., He, C.Y., Matrajt, M., Soldati, D., & Roos, D.S. (1998). Expression, selection, and organellar targeting of the Green Fluorescent Protein in Toxoplasma gondii. Mol. Biochem. Parasitol. 92, 328–338.CrossRefGoogle Scholar
  65. Sullivan, W.J., Jr., Chiang, C.-W., Wilson, C.M., Naguib, F.N.M., el Kouni, M.H., Donald, R.G.K., & Roos, D.S. (1999). Insertional tagging and cloning of at least two loci associated with resistance to adenine arabinoside in Toxoplasma gondii, and cloning of the adenosine kinase locus. Mol. Biochem. Parasitol. 103, 1–14.PubMedCrossRefGoogle Scholar
  66. Tanaka, M., Gu, H., Bzik, D.J., Li, W., & Inselburg, J.W. (1990). Dihydrofolate reductase mutations and chromosomal changes associated with pyrimethamine resistance of Plasmodium falciparum. Mol. Biochem. Parasit. 39, 127–134.CrossRefGoogle Scholar
  67. Triglia, T., Menting, J.G.T., Wilson, C., & Cowman, A.F. (1997). Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc. Nat’l Acad. Sci. U.S.A. 94, 13944–13949.PubMedCrossRefGoogle Scholar
  68. Triglia, T., Wang, P., Sims, P.F.G., Hyde, J.E., & Cowman, A.F. (1998). Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO J. 17, 3807–3815.PubMedCrossRefGoogle Scholar
  69. Trujillo, M., Donald, R.G.K., Roos, D.S., Greene, P.J., & Santi, D.V. (1996). Heterologous expression and characterization of the bifunctional dihydrofolate reductasethymidylate synthase enzyme of Toxoplasma gondii. Biochemistry 35, 6366–6374.PubMedCrossRefGoogle Scholar
  70. Ullman, B., & Carter, D. (1995) Hypoxanthine-guanine phosphoribosyltransferase as a therapeutic target in protozoal infections. Infect. Agents Dis. 4, 29–40.Google Scholar
  71. Waller, R.F., Keeling, P.J., Donald, R.G.K., Striepen, B., Handman, E., Lang-Unnasch, N., Cowman, A.F., Besra, G.S., Roos, D.S., & McFadden, G.I. (1998). Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Nat’l Acad. Sci. U.S.A. 95, 12352–12357.Google Scholar
  72. Waters, A.P., Thomas, A.W., van Dijk, M.R., & Janse, C.J. (1997). Transfection of malaria parasites. Methods 13, 134–147.PubMedCrossRefGoogle Scholar
  73. Weissig, V., Vetro-Widenhouse, T.S., & Rowe, T.C. (1997). Topoisomerase II inhibitors induce cleavage of nuclear and 35 kb plastid DNAs in the malaria parasite Plasmodium falciparum. DNA Cell Biol. 16, 1483–1492.PubMedCrossRefGoogle Scholar
  74. Wilson, R.J.M., Denny, P.W., Preiser, P.R., Roberts, K., Roy, A., Whyte, A., Strath, M., Moore, D.J., & Williamson, D.H. (1997). Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261, 155–172.CrossRefGoogle Scholar
  75. Wu, Y., Kirkman, L.A., & Wellems, T.E. (1996). Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Nat’l Acad. Sci. U.S.A. 93, 1130–1134.PubMedCrossRefGoogle Scholar
  76. Yasuhira, S., & Simpson, L. (1997). Phylogenetic affinity of mitochondria of Euglena gracilis and kinetoplastids using cytochrome oxidase I and hsp60. J. Mol. Evol. 44, 341–347.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • David S. Roos
    • 1
  • John A. Darling
    • 1
  • Mary G. Reynolds
    • 1
  • Kristin M. Hager
    • 1
  • Boris Striepen
    • 1
  • Jessica C. Kissinger
    • 1
  1. 1.Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations