Malaria Chemotherapy: Paradigms from Pyrimidine Metabolism

  • Pradipsinh K. Rathod


Malaria remains one of the most important infectious diseases of the world. It afflicts over three hundred million people and kills about 2 million young children in Africa every year (Trigg and Kondrachine, 1998). Our ability to control the disease in tropical countries has been unimpressive. Public sanitation measures combined with antimalarial drugs have offered the only arsenal against this devastating disease. The problem has become even more acute with the widespread emergence of malarial parasites resistant to traditional drugs. Identification of efficacious new antimalarials continues to be relevant. The challenge is to do so economically.


Dihydrofolate Reductase Parasite Population Malarial Parasite Antimalarial Agent Pyrimidine Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfadhli, S., and Rathod, P. K. (2000). Plasmodium falciparum: Cloning sequencing and functional expression of serine hydroxymethyltransferase. Exp. Parasitol., submitted.Google Scholar
  2. Bzik, D. J., Li, W. B., Horii, T., and Inselburg, J. (1987). Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene. Proc. Natl. Acad. Sci. (USA) 84, 8360–8364.CrossRefGoogle Scholar
  3. Canfield, C. J., Pudney, M., and Gutteridge, W. E. (1995). Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp Parasitol. 80, 373–381.PubMedCrossRefGoogle Scholar
  4. Chu, E., Koeller, D.M., Casey, J.L., Drake, J.C., Chabner, B.A., Elwood, P.C., Zinn, S., and Allegra, C.J. (1995). Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc Natl Acad Sci (U S A). 88, 8977–8981.CrossRefGoogle Scholar
  5. Chu, E., Takimoto, C.H., Voeller, D., Grem, J.L., and Allegra, C.J. (1993). Specific binding of human dihydrofolate reductase protein to dihydrofolate reductase messenger RNA in vitro. Biochemistry 32, 4756–4760.PubMedCrossRefGoogle Scholar
  6. Coderre, J. A., Beverley, S. M., Schimke, R. T., and Santi, D. V. (1983). Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc. Natl. Acad. Sci. (USA) 80, 2132–2136.CrossRefGoogle Scholar
  7. Cowman, A. F. (1998). The molecular basis of resistance to the sulfones, sulfonamides, and dihydrofolate reductase inhibitors, p. 317–330 In I. W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection, ASM Press, Washington, D.C.Google Scholar
  8. Diggens, S. M., Gutteridge, W. E., and Trigg, P. I.. (1970). Altered dihydrofolate reductase associated with a pyrimethamine-resistant Plasmodium berghei berghei produced in a single step. Nature 228, 579–580.PubMedCrossRefGoogle Scholar
  9. Duch, D.S., Banks, S., Dev, I. K., Dickerson, S. H., Ferone, R., Heath, L. S., Humphreys, J., Knick, V., Pendergast, W., Singer, S., et al. (1993). Biochemical and cellular pharmacology of 1843U89, a novel benzoquinazoline inhibitor of thymidylate synthase. Cancer Res. 53: 810–818.PubMedGoogle Scholar
  10. Ferone, R. (1970). Dihydrofolate reductase from pyrimethamine-resistant Plasmodium berghei. J Biol Chem 245, 850–854.PubMedGoogle Scholar
  11. Fidock, D. A., and Wellems, T. E. (1997) Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc Natl Acad Sci (U S A) 94, 10931–10936.CrossRefGoogle Scholar
  12. Friedberg, E.C., Walker, G. C., and Siede, W. 1995. “DNA repair and mutagenesis”, 2 Ed., ASM press, Washington DC.Google Scholar
  13. Gassis, S and Rathod, P. K. (1996). Frequency of drug resistance in Plasmodium falciparum: a nonsynergistic combination of 5-fluoroorotate and atovaquone suppresses in vitro resistance. Antimicrob. Agents Chemother. 40, 914–919.PubMedGoogle Scholar
  14. Gomez, Z. M., and Rathod, P. K. (1990). Antimalarial activity of a combination of 5- fluoroorotate and uridine in mice. Antimicrob. Agents Chemother. 34, 1371–1375.PubMedCrossRefGoogle Scholar
  15. Hayword, R., DeRisi, J., Alfadhli, S., Kaslow, D., Brown, P., and Rathod, P.K. (2000). “Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria”, Mol. Microbiol., in press.Google Scholar
  16. Hekmat-Nejad, M., Lee, P-C.and Rathod, P. K. (1997a). Plasmodium falciparum: Direct cloning and expression of pyrimethamine sensitive and pyrimethamine resistant dihydrofolate reductase domains. Exp. Parasitol. 85, 303–305.Google Scholar
  17. Hekmat-Nejad, M., Lee, P-C.and Rathod, P. K. (1997b) Plasmodium falciparum: Kinetics of interactions of WR99210 with pyrimethamine-sensitive and pyrimethamine-resistant dihydrofolate reductase domains. Exp. Parasitol., 87, 222–228.Google Scholar
  18. Hekmat-Nejad, M., and Rathod, P. K. (1996). Kinetics of Plasmodium falciparum thymidylate synthase: interactions with high-affinity metabolites of 5-fluoroorotate and D1694. Antimicrob. Agents Chemother. 40, 1628–1632.PubMedGoogle Scholar
  19. Houghton, P. J., Germain, G. S., Hazelton, B. J., Pennington, J. W., and Houghton, J. A. (1989). Mutants of human colon adenocarcinoma, selected for thymidylate synthase deficiency. Proc. Natl. Acad. Sci. (USA). 86, 1377–1381.CrossRefGoogle Scholar
  20. Ingraham, H. A., Dickey, L., and Goulian., M. (1986). DNA fragmentation and cytotoxicity from increased cellular deoxyuridylate. Biochemistry 25, 3225–3230.PubMedCrossRefGoogle Scholar
  21. Jackman, A.L., Taylor, G. A., Gibson, W., Kimbell, R., Brown, M., Calvert, A. H., Judson, I. R., and Hughes, L. R. (1991). ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: a new agent for clinical study. Cancer Res. 51, 5579–5586.PubMedGoogle Scholar
  22. Jiang, L., Lee, P.-C., White, J., and Rathod, P. K. (2000) “Potent and selective activity of a combination of thymidine and 1843U89, a folate-based thymidylate synthase inhibitor, against Plasmodium falciparum”,Antimicrob. Agents Chemother., in press.Google Scholar
  23. Kitchens, M. E., Forsthoefel, A. M., Rafique, Z., Spencer, H. T., Berger, F. G. (1999) Ligand-mediated induction of thymidylate synthase occurs by enzyme stabilization. Implications for autoregulation of translation. J Biol Chem 274, 12544–12547.PubMedCrossRefGoogle Scholar
  24. Krogstad, D. J., and De, D. (1998). Chloroquine: Modes of action and resistance and the activity of chloroquine analogs. p. 331–339. In I. W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection, ASM Press, Washington, D.C.Google Scholar
  25. Kunz, B. A., Kohalmi, S. E., Kunkel, T. A., Mathews, C. K., McIntosh, E. M., and Reidy, J. A.. (1994). International Commission for Protection Against Environmental Mutagens and Carcinogens. Deoxyribonucleoside triphosphate levels: a critical factor in the maintenance of genetic stability. Mutat. Res. 318, 1–64.PubMedCrossRefGoogle Scholar
  26. Laur, S. A., Rathod, P. K., Ghori, N. and Haldar, K. (1997). “A membrane network for nutrient transport in red cells infected with the malaria parasite”, Science 276, 1122–1125.Google Scholar
  27. Meek, T. D., Garvey, E. P., and Santi, D. V. (1985) Purification and characterization of the bifunctional thymidylate synthetase-dihydrofolate reductase from methotrexate-resistant Leishmania tropica. Biochemistry 24, 678–686.PubMedCrossRefGoogle Scholar
  28. Milhous, W. K. and Kyle, D. E. (1998). In troduction to the modes of action of and mechanisms of resistance to antimalarials, p. 303–316. In I. W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection, ASM Press, Washington, D.C.Google Scholar
  29. Milhous, W.K., Weatherly, N.F., Bowdre, J.H., Desjardins, R.E.. (1985). In vitro activities of and mechanisms of resistance to antifol antimalarial drugs. Antimicrob Agents Chemother. 27, 525–30.PubMedCrossRefGoogle Scholar
  30. Phillips, M.A., Coffin, P., Wang, C.C. (1987). Cloning and sequencing of the ornithine decarboxylase gene from Tiypanosoma brucei. Implications for enzyme turnover and selective difluoromethylornithine inhibition. J Biol Chem 262, 8721–8727.PubMedGoogle Scholar
  31. Rathod, P. K., and Gomez, Z. M. (1991). Plasmodium yoelii: oral delivery of 5-fluoroorotate to treat malaria in mice. Exp. Parasitol. 73, 512–514.Google Scholar
  32. Rathod, P. K., Khatri, A., Hubbert, T., Milhous, W. K.. (1989). Selective activity of 5fluoroorotic acid against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 33, 1090–1094.Google Scholar
  33. Rathod, P. K., Khosla, M., Gassis, S., Young, R. D., and Lutz, C. (1994). Selection and characterization of 5-fluoroorotate-resistant Plasmodium falciparum. Antimicrob. Agents Chemother. 38, 2871–2876.PubMedCrossRefGoogle Scholar
  34. Rathod, P. K. Leffers, N. P., and Young, R. D. (1992). Molecular targets of 5-fluoroorotate in the human malaria parasite, Plasmodium falciparum. Antimicrob. Agents Chemother. 36, 704–711.PubMedCrossRefGoogle Scholar
  35. Rathod, P. K., McErlean, T., and Lee, P. C.. (1997). Variations in frequencies of drug resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. (USA) 94, 9389–9393.CrossRefGoogle Scholar
  36. Rathod, P. K., and Reshmi, S. (1994). Susceptibility of Plasmodium falciparum to a combination of thymidine and ICI D1694, a quinazoline antifolate directed at thymidylate synthase. Antimicrob. Agents Chemother. 38, 476–480.PubMedCrossRefGoogle Scholar
  37. Rathod, P. K. and Reyes, P. 1983. “Orotidylate metabolizing enzymes of the human malarial parasite, Plasmodium falciparum, differ from host cell enzymes”. J. Biol. Chem. 258, 2852–2855.Google Scholar
  38. Reyes, P., Rathod, P. K., Sanchez, D. J., Mrema, J. E., Rieckmann, K. H., and Heidrich, H. G. (1982). Enzymes of purine and pyrimidine metabolism from the human malaria parasite, Plasmodium falciparum. Mol. Biochem. Parasitol. 5, 275–290.Google Scholar
  39. Reynolds, M. G. and Roos, D. S. (1998). A biochemical and genetic model for parasite resistance to antifolates. Toxoplasma gondii provides insights into pyrimethamine and cycloguanil resistance in Plasmodium falciparum. J. Biol. Chem. 273, 3461–3469.PubMedCrossRefGoogle Scholar
  40. Seymour, K. K., Lyons, S. D., Phillips, L., Rieckmann, K. H., and R. I. Christopherson, R. I. (1994). Cytotoxic effects of inhibitors of de novo pyrimidine biosynthesis upon Plasmodium falciparum. Biochemistry 33, 5268–5274.Google Scholar
  41. Shallom, S., Zhang, K., Jiang, L., and Rathod, P. K. (1999). Essential protein-protein interactions between Plasmodium falciparum thymidylate synthase and dihydrofolate reductase domains. J. Biol. Chem., in press.Google Scholar
  42. Sherman, I. W. 1998. Purine and pyrimidine metabolism of asexual stages, p.177–184 In I. W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection, ASM Press, Washington, D.C.Google Scholar
  43. Sirawaraporn, W., Sathitkul, T., Sirawaraporn, R., Yuthavong, Y., Santi, D.V. (1997) Antifolateresistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc Natl Acad Sci (U S A) 94, 1124–1129.CrossRefGoogle Scholar
  44. Sullivan, D.J. Jr, Matile, H., Ridley, R.G., Goldberg, D.E. (1998). A common mechanism for blockade of heure polymerization by antimalarial quinolines. J. Biol. Chem. 273, 31103–31107.PubMedCrossRefGoogle Scholar
  45. Srivastava, I. K., and Vaidya, A. B. (1999). A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob. Agents Chemother. 43, 1334–1339.PubMedGoogle Scholar
  46. Trigg, P. I. and A. V. Kondrachine. (1998). The current global malaria situation, p.11–22 In I. W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection, ASM Press, Washington, D.C.Google Scholar
  47. Trujillo, M., Donald, R. G., Roos, D. S., Greene, P. J., and Santi, D. V. (1996) Heterologous expression and characterization of the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of Toxoplasma gondii. Biochemistry 35, 6366–6374.PubMedCrossRefGoogle Scholar
  48. Vaidya, A. B. (1998) Mitochondrial physiology as a target for atovaquone and other antimalarials. p. 355–368. In I. W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection, ASM Press, Washington, D.C.Google Scholar
  49. van Dijk, M.R., Waters, A.P., Janse, C.J. (1995). Stable transfection of malaria parasite blood stages. Science 268, 1358–1362.PubMedCrossRefGoogle Scholar
  50. Wang, P., Brobey, R.K., Horii, T., Sims, P.F., Hyde, J.E. (1999) Utilization of exogenous folate in the human malaria parasite Plasmodium falciparum and its critical role in antifolate drug synergy. Mol Microbiol. 32, 1254–1262.PubMedCrossRefGoogle Scholar
  51. Wellems, T. E., Su, X-Z., Ferdig, M., and Fidock, D. A. (1999) Genome projects, geneticGoogle Scholar
  52. analysis and the changing landscape of malaria research. Curr Opin Microbiol 2: 415–419 White, N. J. (1992). Antimalarial drug resistance: the pace quickens. J. Antimicrob. Chemother. 30,571–585.Google Scholar
  53. Wu, Y, Kirkman, L. A., and Wellems, T. E. (1996). Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Natl. Acad. Sci. (USA). 93, 1130–1134.PubMedCrossRefGoogle Scholar
  54. Yoshioka, A., Tanaka, S., Hiraoka, O., Koyama, Y., Hirota, Y., Ayusawa, D., Seno, T., Garrett, C., and Wataya, Y. (1987). Deoxyribonucleoside triphosphate imbalance. 5Fluorodeoxyuridine-induced DNA double strand breaks in mouse FM3A cells and the mechanism of cell death. J. Biol. Chem. 262, 8235–8241.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Pradipsinh K. Rathod
    • 1
  1. 1.Department of BiologyThe Catholic University of AmericaUSA

Personalised recommendations