Advertisement

Cell Biological Approaches to the Study of Intracellular Pathogens: Motility, Invasion, Secretion and Vesicular Trafficking

  • David G. Russell
  • Dana G. Mordue
  • Wandy Beatty
  • Olivia K. Giddings
  • Jennie L. Lovett
  • Andreas Lingnau
  • Maren Lingnau
  • Jaime Dant
  • L. David Sibley
Chapter

Abstract

Gaining an appreciation of the interplay between intracellular pathogens and their host cells requires the exploitation of an ever-broadening range of techniques. These techniques are bundled under the blanket term “Cell Biology”, but are in reality a bastardized mixture of biochemistry, molecular biology and physiology. This chapter describes general protocols and specific experiments that have been developed and applied to several different intracellular pathogens.

Keywords

Normal Goat Serum Mycobacterium Avium Homogenization Buffer Dense Granule Toxoplasma Gondii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beatty, W. B., Rhoades, E. R., Ullrich, H. J., Chatterjee, D., and Russell, D. G. (2000). Trafficking of mycobacterial lipids in infected macrophages: From the phagosome to the exosome. Traffic, in press. Google Scholar
  2. Brun, R., and Schonberger, M. (1979). Cultivation and in vitro cloning of Trypanosoma brucei in semi defined medium. Acta Trop. 36, 289–291.PubMedGoogle Scholar
  3. Burg, J. L., Perlman, D., Kasper, L. H., Ware, P. L., and Boothroyd, J. C. (1988). Molecular analysis of the gene encoding the major surface antigen of Toxoplasma gondii. J. Immunol. 141, 3584–3591.PubMedGoogle Scholar
  4. Carruthers, V. B., Giddings, O. K., and Sibley, L. D. (1999). Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell. Micro. in press. Google Scholar
  5. Carruthers, V. B., Moreno, S. N. J., and Sibley, L. D. (1999). Ethanol and acetaldehyde elevate intracellular calcium and stimulate microneme discharge in Toxoplasma gondii. Biochem. J. 342, 379–386.PubMedCrossRefGoogle Scholar
  6. Carruthers, V. B., and Sibley, L. D. (1997). Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur. J. Cell Biol. 73, 114–123.PubMedGoogle Scholar
  7. Clemens, D. L., and Horwitz, M. A. (1996). The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin. J Exp Med 184, 1349–55.PubMedCrossRefGoogle Scholar
  8. Dobrowolski, J., and Sibley, L. D. (1996). The role of the cytoskeleton in host cell invasion by Toxoplasma gondii. Boeh. Inst. Mitt. 99, 90–96.Google Scholar
  9. Engering, A., Lefkovits, I., and Pieters, J. (1997). Analysis of subcellular organelles involved in major histocompatibility complex (MHC) class II-restricted antigen presentation by electrophoresis. Electrophor. 18, 2523–30.CrossRefGoogle Scholar
  10. Hâkansson, S., Morisaki, H., Heuser, J. E., and Sibley, L. D. (1999). Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Molec. Biol. Cell in press. Google Scholar
  11. Harlow, E., and Lane, D. (1988). Antibodies: A laboratory manual ( Cold Spring Harbor, NY: Cold Spring Harbor Laboratory).Google Scholar
  12. Howe, D. K., and Sibley, L. D. (1997). Development of Molecular Genetics for Neospora caninum A complementary system to Toxoplasma gondii. Meth. Comp. Meth. Enzym. 13, 123–133.CrossRefGoogle Scholar
  13. Joiner, K. A., Furhman, S. A., Miettinen, H. M., Kasper, L. H., and Mellman, I. (1990). Toxoplasma gondii: Fusion competence of parasitophorous vacuoles in Fc-receptor transfected fibroblasts. Science 249, 641–646.Google Scholar
  14. Jones, T. C., Yeh, S., and Hirsch, J. G. (1972). The interaction between Toxoplasma gondii and mammalian cells. I Mechanism of entry and intracellular fate of the parasite. J. Exp. Med. 136, 1157–1172.PubMedCrossRefGoogle Scholar
  15. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227, 680–685.CrossRefGoogle Scholar
  16. Lecordier, L., Mercier, C., Sibley, L. D., and Cesbron-Delauw, M. F. (1999). Transmembrane insertion of the Toxoplasma gondii GRAS protein occurs following soluble secretion into the host cell. Mol. Biol. Cell in press. Google Scholar
  17. Mercier, C., Lefebvre-Van Hende, S., Garber, G. E., Lecordier, L., Capron, A., and CesbronDelauw, M. F. (1996). Common cis-acting elements critical for the expression of several genes of Toxoplasma gondii. Molecular Microbiology 21, 421–428.PubMedCrossRefGoogle Scholar
  18. Mercier, C. M., Cesbron-Delauw, M. F., and Sibley, L. D. (1998). The amphipathic alpha-helices of the Toxoplasma protein GRA2 mediate post-secretory membrane association. J. Cell Science 111, 2171–2180.PubMedGoogle Scholar
  19. Mineo, J. R., McLeod, R., Mack, D., Smith, J., Khan, I. A., Ely, K. H., and Kasper, L. H. (1993). Antibodies to Toxoplasma gondii major surface protein (SAG-1, P30) inhibit infection of host cells and are produced in murine intestine after peroral infection. J. Immunol. 150, 3951–3964.PubMedGoogle Scholar
  20. Mordue, D., Hâkansson, S., Niesman, I., and Sibley, L. D. (1999). Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Exp. Parasitol. 92. Google Scholar
  21. Mordue, D. G., and Sibley, L. D. (1997). Intracellular fate of vacuoles containing Toxoplasma gondii is determined at the time of formation and depends on the mechanism of entry. J. Immunol. 159, 4452–4459.PubMedGoogle Scholar
  22. Roos, D. S., Donald, R. G. K., Morrissette, N. S., and Moulton, A. L. (1994). Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Meth. Cell Biol. 45, 28–61.Google Scholar
  23. Russell, D. G. (1994). Immunoelectron microscopy of endosomal trafficking in macrophages infected with microbial pathogens. Meth. Cell Biol 45, 277–88.CrossRefGoogle Scholar
  24. Russell, D. G. (2000). Where to stay inside the cell: A homesteader’s guide to intracellular parasitism. Cellular Microbiology (ed. Cossart, Boquet, Normark, Rappouli) ASM Press.Google Scholar
  25. Russell, D. G., Dant, J., and Sturgill-Koszycki, S. (1996). Mycobacterium avium-and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J Immunol 156, 4764–73.Google Scholar
  26. Russell, D. G., Xu, S., and Chakraborty, P. (1992). Intracellular trafficking and the parasitophorous vacuole of Leishmania mexicana-infected macrophages. J Cell Sci 103, 1193–210.PubMedGoogle Scholar
  27. Schaible, U. E., Schlesinger, P. H., Steinberg, T. H., Mangel, W. F., Kobayashi, T., and Russell, D. G. (1999). Parasitophorous vacuoles of Leishmania mexicana acquire macromolecules from the host cell cytosol via two independent routes. J Cell Sci 112, 681–93.PubMedGoogle Scholar
  28. Schaible, U. E., Sturgill-Koszycki, S., Schlesinger, P. H., and Russell, D. G. (1998). Cytokine activation leads to acidification and increases maturation of Mycobacterium aviumcontaining phagosomes in murine macrophages. J Immunol 160, 1290–6.PubMedGoogle Scholar
  29. Seeber, F., and Boothroyd, J. C. (1996). Escherichia colt ß-galactosidase as an in vitro and in vivo reporter enzyme and stable transfection marker in the intracellular protozoan parasite Toxoplasma gondii. Gene 169, 39–45.Google Scholar
  30. Sinai, A. P., Webster, P., and Joiner, K. A. (1997). Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. J. Cell Sci. 110, 2117–2128.PubMedGoogle Scholar
  31. Soldati, D., and Boothroyd, J. C. (1995). A selector of transcription initiation in the protozoan parasite Toxoplasma gondii. Mol. Cell. Biol. 15, 87–93.PubMedGoogle Scholar
  32. Soldati, D., and Boothroyd, J. C. (1993). Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260, 349–352.PubMedCrossRefGoogle Scholar
  33. Sturgill-Koszycki, S., Haddix, P. L., and Russell, D. G. (1997). The interaction between Mycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophor. 18, 2558–65.CrossRefGoogle Scholar
  34. Sturgill-Koszycki, S., Schaible, U. E., and Russell, D. G. (1996). Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J 15, 6960–8.Google Scholar
  35. Sturgill-Koszycki, S., Schlesinger, P. H., Chakraborty, P., Haddix, P. L., Collins, H. L., Fok, A. K., Allen, R. D., Gluck, S. L., Heuser, J., and Russell, D. G. (1994). Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase Science 263, 678–81.Google Scholar
  36. Suss-Toby, E., Zimmerberg, J., and Ward, G. E. (1996). Toxoplasma invasion: The parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fusion pore. Proc. Natl. Acad. Sci. USA 93, 8413–8418.Google Scholar
  37. Tulp, A., Verwoerd, D., Benham, A., and Neefjes, J. (1997). High-resolution density gradient electrophoresis of proteins and subcellular organelles. Electrophor. 18, 2509–15.CrossRefGoogle Scholar
  38. Tulp, A., Verwoerd, D., Dobberstein, B., Ploegh, H. L., and Pieters, J. (1994). Isolation and characterization of the intracellular MHC class II compartment. Nature 369, 120–6.PubMedCrossRefGoogle Scholar
  39. Tulp, A., Verwoerd, D., and Pieters, J. (1993). Application of an improved density gradient electrophoresis apparatus to the separation of proteins, cells and subcellular organelles. Electrophor. 14, 1295–301.CrossRefGoogle Scholar
  40. Via, L. E., Deretic, D., Ulmer, R. J., Hibler, N. S., Huber, L. A., and Deretic, V. (1997). Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J Biol Chem 272, 13326–31.PubMedCrossRefGoogle Scholar
  41. Via, L. E., Fratti, R. A., McFalone, M., Pagan-Ramos, E., Deretic, D., and Deretic, V. (1998). Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111, 897–905.PubMedGoogle Scholar
  42. Wilson, I., Niman, H. L., Houghten, R. A., Cherenson, A. R., Connolly, M. L., and Lerner, R. A. (1984). The structure of an antigenic determinant in a protein. Cell 37, 767–778.PubMedCrossRefGoogle Scholar
  43. Xu, S., Cooper, A., Sturgill-Koszycki, S., van Heyningen, T., Chatterjee, D., Orme, I., Allen, P., and Russell, D. G. (1994). Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol 153, 2568–78.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • David G. Russell
    • 1
  • Dana G. Mordue
    • 1
  • Wandy Beatty
    • 1
  • Olivia K. Giddings
    • 1
  • Jennie L. Lovett
    • 1
  • Andreas Lingnau
    • 1
  • Maren Lingnau
    • 1
  • Jaime Dant
    • 1
  • L. David Sibley
    • 1
  1. 1.Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations