Biological Regulation and Development pp 285-303 | Cite as
Circadian Rhythmicity
Abstract
The control of rate and of temporal sequence is a major aspect of biological regulation. Inferences about causality are often made on the basis of experimentally determined temporal sequence with the unstated assumption that the underlying temporal processes are linear. Because many biological processes oscillate (especially those with feedback regulation), the assumption of linearity is likely to be false, and the causal connections based on it will often be wrong. When the underlying temporal organization is oscillatory, then processes can appear to occur after the events that they cause. In cases that involve synchronization of oscillations, the regulatory cycle often “phase lags” the oscillation that it controls (Pittendrigh, 1981b). This example is meant only to illustrate the importance of understanding temporal frameworks.
Keywords
Circadian Rhythm Pineal Gland House Sparrow Optic Lobe Circadian SystemPreview
Unable to display preview. Download preview PDF.
References
- Andresen, M. C., and Brown, A. M., 1979, Photoresponses of a sensitive extraretinal photoreceptor in Aplysia, J. Physiol 287: 267.PubMedGoogle Scholar
- Aschoff, J., 1981, Handbook of Behavioral Neurobiology. Biological Rhythms, Vol. 4, Plenum Press, New York.CrossRefGoogle Scholar
- Aschoff, J., and Weyer, R., 1976, Human circadian rhythms: A multioscillatory system, Fed. Proc 35: 23–26.Google Scholar
- Baylor, D. A., and Hodgkin, A. L., 1973, Detection and resolution of visual stimuli by turtle photoreceptor, J. Physiol 234: 163.PubMedGoogle Scholar
- Benson, J. A., and Jacklet, J. W., 1977, Circadian rhythm of output from neurons in the eye of Aplysia. I. Effect of deuterium oxide and temperature, J. Exp. Biol 70: 151.Google Scholar
- Binkley, S., and Geller, E. B., 1975, Pineal N-acetyltransferase in chickens: Rhythm persists in constant darkness, J. Comp. Physiol 99: 67.CrossRefGoogle Scholar
- Binkley, S. A., Riebman, J. B., and Reilly, K. B., 1978, The pineal gland: A biological clock in vitro, Science 202: 1198.PubMedCrossRefGoogle Scholar
- Block, G. D., and McMahon, D. G., 1983, Localized illumination of the Aplysia and Bulla eye reveals new relationships between retinal layers, Brain Res. 265: 134.PubMedCrossRefGoogle Scholar
- Block, G. D., and Page, T. L., 1978, Circadian pacemakers in the nervous system, Annu. Rev. Neurosci 1: 19.PubMedCrossRefGoogle Scholar
- Block, G. D., and Roberts, M. H., 1981, Circadian pacemaker in the Bursatella eye: Properties of the rhythm and its effects on locomotor behavior, J. Comp. Physiol 142: 403.CrossRefGoogle Scholar
- Block, G. D., and Wallace, S. F., 1982, Localization of a circadian pacemaker in the eye of a mollusk, Bulla, Science 217: 155.Google Scholar
- Cicerone, C. M., Green, D. G., and Fisher, L. J., 1979, Cone input to ganglion cells in hereditary retinal degeneration, Science 203: 11–13.CrossRefGoogle Scholar
- Corrent, G., McAdoo, D. J., and Eskin, A., 1978, Serotonin shifts the phase of the circadian rhythm from the Aplysia eye, Science 202: 977.PubMedCrossRefGoogle Scholar
- Corrent, G., Eskin, A., and Kay, I., 1982, Entrainment of the circadian rhythm from the eye of Aplysia: Role of serotonin, Am. J. Physiol 242: R326.PubMedGoogle Scholar
- Deguchi, T., 1979a, Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland, Science 203: 12–45.CrossRefGoogle Scholar
- Deguchi, T., 1979b, A circadian oscillator in cultured cells of chicken pineal gland, Nature 282: 94.PubMedCrossRefGoogle Scholar
- Deguchi, T., 1979c, Role of adenosine 3’, 5’-monophosphate in the regulation of circadian oscillation of serotonin N-acetyltransferase activity in cultured chicken pineal glands, J. Neurochem 33: 45.PubMedCrossRefGoogle Scholar
- Deguchi, T., 1981, Rhodopsin-like photosensitivity of isolated chicken pineal gland, Nature 290: 706.PubMedCrossRefGoogle Scholar
- Dodt, E., and Heerd, E., 1962, Mode of action of pineal nerve fibers in frogs, J. Neurophysiol 25: 405.PubMedGoogle Scholar
- Elliott, J. A., 1976, Circadian rhythms and photoperiodic time measurement in mammals, Fed. Proc 25: 23–39.Google Scholar
- Eskin, A., 1971, Properties of the Aplysia visual system: In vitro entrainment of the circadian rhythm and centrifugal regulation of the eye, Z. Vgl. Physiol. 74: 353.Google Scholar
- Eskin, A., 1977, Neurophysiological mechanisms involved in photoentrainment of the circadian rhythm from the Aplysia eye, J. Neurobiol. 8: 273.PubMedCrossRefGoogle Scholar
- Eskin, A., 1979a, Identification and physiology of circadian pacemakers, Fed. Proc 38: 2570.PubMedGoogle Scholar
- Eskin, A., 1979b, Circadian system of the Aplysia eye: Properties of the pacemaker and mechanisms of its entrainment, Fed. Proc. 38: 25–73.Google Scholar
- Eskin, A., 1982, A protein synthesis inhibitor blocks the effect of serotonin and 8-benzylthio cAMP on the Aplysia eye circadian rhythm, Soc. Neurosci. Abstr. 8: 547.Google Scholar
- Eskin, A., and Harcombe, E., 1977, Eye of Navanax: Optic activity, circadian rhythm and morphology, Comp. Biochem. Physiol. 57A: 443.Google Scholar
- Eskin, A., and Takahashi, J. S., 1983, Adenylate cyclase activation shifts the phase of a circadian pacemaker, Science 220: 82.PubMedCrossRefGoogle Scholar
- Eskin, A., Corrent, G., Lin, C. Y., and McAdoo, P. J., 1982, Mechanism for shifting the phase of a circadian rhythm by serotonin: Involvement of cAMP, Proc. Natl. Acad. Sci. U.S.A 79: 660.PubMedCrossRefGoogle Scholar
- Feldman, J. F., 1982, Genetic approaches to circadian clocks, Am. Rev. Plant Physiol 33: 583.CrossRefGoogle Scholar
- Follett, B. K., and Follett, D. E. (eds), 1981, Biological Clocks in Seasonal Reproductive Cycles, John Wright and Sons, Bristol, United Kingdom.Google Scholar
- Gaston, S., and Menaker, M., 1968, Pineal function: The biological clock in the sparrow? Science 160: 11–25.CrossRefGoogle Scholar
- Green, D. J., and Gillette, R., 1982, Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice, Brain Res. 245: 198.PubMedCrossRefGoogle Scholar
- Groos, G. A., and Mason, R., 1980, The visual properties of rat and cat suprachiamatic neurones, J. Comp. Physiol. 135: 349.Google Scholar
- Handler, A. M., and Konopka, R. J., 1979, Transplantation of a circadian pacemaker in Drosophila, Nature 279: 236.PubMedCrossRefGoogle Scholar
- Hoffman, K., 1971, Splitting of the circadian rhythm as a function of light intensity, in: Biochronometry ( M. Menaker, ed.), pp. 134–150, National Academy of Science, Washington, D.C.Google Scholar
- Hudson, D. J., and Lickey, M., 1980, Internal desynchronization between the identified circadian oscillators in Aplysia, Brain Res. 183: 481.PubMedCrossRefGoogle Scholar
- Inouye, S. T., and Kawamura, H., 1979, Persistance of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus, Proc. Natl. Acad. Sci. U.S.A 76: 59–62.Google Scholar
- Inouye, S. T., and Kawamura, H., 1982, Characteristics of a circadian pacemaker in the suprachiasmatic nucleus, J. Comp. Physiol 146: 153.CrossRefGoogle Scholar
- Jacklet, J. W., 1969, Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia, Science 164: 562.PubMedCrossRefGoogle Scholar
- Jacklet, J. W., 1974, The effects of constant light and light pulses on the circadian rhythm in the eye of Aplysia, J. Comp. Physiol. 90: 33.Google Scholar
- Jacklet, J. W., 1977, Neuronal circadian rhythms: Phase shifting by a protein synthesis inhibitor, Science 198: 69.Google Scholar
- Jacklet, J. W., 1981, Circadian timing by endogenous oscillators in the nervous system: Toward cellular mechanisms: Biol. Bull. 160: 199.CrossRefGoogle Scholar
- Kasai, C., Menaker, M., and Perez-Polo, R., 1979, Circadian clock in culture: N-acetyltransferase activity of chick pineal glands oscillates in vitro, Science 203: 656.CrossRefGoogle Scholar
- Koehler, W. K., and Fleissner, G., 1978, Internal desynchronization of bilaterally organized circadian oscillators in the visual system of insects, Nature 274: 708.PubMedCrossRefGoogle Scholar
- LaVail, M. M., Sidman, M., Raysin, R., and Sidman, R. L., 1974, Discrimination of light intensity by rats with inherited retinal degeneration: A behavioral and cytological study, Vision Res. 14: 693.PubMedCrossRefGoogle Scholar
- McMillan, J. P., Elliott, J. A., and Menaker, M., 1975, On the role of eyes and brain photoreceptors in the sparrow: Arrhythmicity in constant light, J. Comp. Physiol 102: 263.CrossRefGoogle Scholar
- McMurray, L., and Hastings, J. W., 1972, No desynchronization among four circadian rhythms in the unicellular alga, Conyaulaz polyedra, Science 175: 11–37.Google Scholar
- Menaker, M., 1968, Extraretinal light perception in the sparrow. I: Entrainment of the biological clock, Proc. Natl. Acad. Sci. U.S.A 59: 414.PubMedCrossRefGoogle Scholar
- Menaker, M., 1982, The search for principles of physiological organization in vertebrate circadian systems, in: Vertebrate Circadian Systems (J. Aschoff, S. Daan and G. A. Gross, eds.), pp. 1–12, Springer-Verlag, Berlin.CrossRefGoogle Scholar
- Menaker, M., and Underwood, H., 1976, Extraretinal photoreception in birds, Photochem. Photobiol. 23:299.CrossRefGoogle Scholar
- Moore, R. Y., 1978, Central neural control of circadian rhythms, in: Frontiers in Neuroendocrinology, Vol. 5 ( W. F. Ganong and L. Martini, eds.), pp. 185–206, Raven Press, New York.Google Scholar
- Moore-Ede, M. C., Sulzman, F. M., and Fuller, C. A., 1982, The Clocks That Time Us, Harvard University Press, Cambridge.Google Scholar
- Mote, M. I., and Black, K. R., 1981, Action spectrum and threshold sensitivity of entrainment of circadian running activity in the cockroach, Periplaneta Americana. Photochem. Photobiol 34: 257.Google Scholar
- Munz, F. W., and McFarland, W. N., 1977, Evolutionary adaptations of fishes to the photic environment, in: Handbook of Sensory Physiology. The Visual System in Vertebrates, Vol. VII/5 ( F. Crescitelli, ed.), pp. 193–274, Springer-Verlag, Berlin.Google Scholar
- Nelson, R., and Zucker, I., 1981, Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight, Comp. Biochem. Physiol 69A: 145.CrossRefGoogle Scholar
- Page, T. L., 1981a, Localization of circadian pacemakers in insects, in: Biological Clocks in Seasonal Reproductive Cycles ( B. K. Follett and D. E. Follett, eds.), pp. 113–124, John Wright and Sons, Bristol, United Kingdom.Google Scholar
- Page, T. L., 1981b, Effects of low temperature pulses on the circadian rhythm of locomotor activity in the cockroach, Am. J. Physiol 240: R144.PubMedGoogle Scholar
- Page, T. L., 1982a, Transplantation of the cockroach circadian pacemaker, Science 216: 73.PubMedCrossRefGoogle Scholar
- Page, T. L., 19826, Extraretinal photoreception in entrainment and photoperiodism in invertebrates, Experientia 38: 100.Google Scholar
- Page, T. L., Caldarola, P. C., and Pittendrigh, C. S., 1977, Mutual entrainment of bilaterally distributed circadian pacemakers, Proc. Natl. Acad. Sci. U.S.A 74: 12–77.CrossRefGoogle Scholar
- Pickard, G. E., Turek, F. W. Lamperti, A. A., and Silverman, A. J., 1982, The effect of neonatally administered monosodium glutamute (MSG) on the development of retinofugal projections and the entrainment of circadian locomotor activity, Behay. Neural. Biol 34: 433.Google Scholar
- Pittendrigh, C. S., 1974, Circadian oscillations in cells and the circadian organization of multicellular systems, in: The Neurosciences Third Study Program ( F. O. Schmitt and F. G. Worden, eds.), pp. 437–458, MIT Press, Cambridge.Google Scholar
- Pittendrigh, C. S., 1981a, Circadian systems: General perspective, in: Handbook of Behavioral Neurobiology. Biological Rhythms, Vol. 4 ( J. Aschoff, ed.), pp. 57–80, Plenum Press, New York.Google Scholar
- Pittendrigh, C. S., 1981b, Circadian systems: Entrainment, in: Handbook of Behavioral Neurobiology, Biological Rhythms, Vol. 4 ( J. Aschoff, ed.), pp. 95–124, Plenum Press, New York.Google Scholar
- Pittendrigh, C. S., 1981e, Circadian organization and the photoperiodic phenomena, in: Biological Clock in Seasonal Reproductive Cycles ( B. K. Follett and D. E. Follett, eds.), pp. 1–35, John Wright and Sons, Bristol, United Kingdom.Google Scholar
- Pittendrigh, C. S., and Daan, S., 1976, A functional analysis of circadian pacemakers in nocturnal rodents, V. Pacemaker structure: A clock for all seasons, J. Comp. Physiol 106: 333.CrossRefGoogle Scholar
- Ripps, H., and Weale, R. A., 1976, The visual stimulus, in: The Eye, Vol. 2A ( H. Dayson, ed.), pp. 43–99, Academic Press, New York.Google Scholar
- Rothman, S., and Strumwasserr, F., 1976, Phase shifting the circadian rhythm of neuronal activity in the isolated Aplysia eye with puromycin and cycloheximide: Electrophysiological and biochemical studies, J. Gen. Physiol 68: 359.PubMedCrossRefGoogle Scholar
- Rusak, B., and Boulos, Z., 1981, Pathways for photic entrainment of mammaliam circadian rhythms, Photochem. Photobiol 34: 267.PubMedGoogle Scholar
- Rusak, B., and Zucker, I., 1979, Neural regulation of circadian rhythms, Physiol. Rev 59: 449.PubMedGoogle Scholar
- Simpson, S. M., and Follett, B. K., 1981, Pineal and hypothalamic pacemakers: Their role in regulating circadian rhythmicity in Japanese quail, J. Comb. Physiol 144: 381.CrossRefGoogle Scholar
- Strumwasser, F., Alvarez, R. B., Viele, D. P., and Woolum, J. C., 1979, Structure and function of a neuronal circadian oscillator system, in: Biological Rhythms and their Central Mechanism ( M. Suda, D. Hayaishi and H. Nakagawa, eds.), pp. 41–56, Elsevier/North-Holland, Amsterdam.Google Scholar
- Tabata, M., Tamura, T., and Niwa, H., 1975, Origin of the slow potential in the pineal organ of the rainbow trout, Vision Res. 15: 737.PubMedCrossRefGoogle Scholar
- Takahashi, J. S., 1981, Neural and endocrine regulation of avian circadian systems, Ph.D. dissertation, Department of Biology and Institute of Neuroscience, University of Oregon, Eugene.Google Scholar
- Takahashi, J. S., and Menaker, M., 1979, Physiology of avian circadian pacemakers, Fed. Proc 38: 25–83.Google Scholar
- Takahashi, J. S., and Menaker, M., 1982a, Entrainment of the circadian system of the house sparrow: A population of oscillators in pinealectomized birds, J. Comp. Physiol 146: 245.CrossRefGoogle Scholar
- Takahashi, J. S., and Menaker, M., 1982b, Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus, J. Neuroscience 2: 815.Google Scholar
- Takahashi, J. S., and Zatz, M., 1982a, Regulation of circadian rhythmicity, Science 217: 1104.PubMedCrossRefGoogle Scholar
- Takahashi, J. S., and Zatz, M., 1982b, Photic regulation of cyclic nucleotide levels and N-acetyltransferase activity in the cultured avian pineal, Soc. Neurosci. Abst 8: 546.Google Scholar
- Takahashi, J. S., Hamm, H., and Menaker, M., 1980, Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro, Proc. Natl. Acad. Sci. U.S.A 77: 2319.PubMedCrossRefGoogle Scholar
- Truman, J. W., 1972, Physiology of insect rhythms. II. The silkmoth brain as the location of the biological clock controlling eclosion. J. Comp. Physiol 81: 99.CrossRefGoogle Scholar
- Truman, J. W., 1976, Extraretinal photoreception in insects, Photochem. Photobiol 23: 215.CrossRefGoogle Scholar
- Turek, F. W., McMillan, J. P., and Menaker, M., 1976, Melatonin: Effects on the circadian locomotor rhythm of sparrows, Science 194: 1441.PubMedCrossRefGoogle Scholar
- Underwood, H., 1977, Circadian organization in lizards: The role of the pineal organ, Science 195:587.PubMedCrossRefGoogle Scholar
- Underwood, H., and Groos, G., 1982, Vertebrate circadian rhythms: Retinal and extraretinal photoreception, Experientia 28: 1013.CrossRefGoogle Scholar
- Underwood, H., and Menaker, M., 1976, Extraretinal photoreception in lizards, Photochem. Photobiol. 23:227.CrossRefGoogle Scholar
- Wainwright, S. D., 1980, Diurnal cycles in serotonin acetyltransferase activity and cyclic GMP content of cultured pineal glands, Nature 285: 478.PubMedCrossRefGoogle Scholar
- Wainwright, S. D., and Wainwright, L. K., 1979, Chick pineal serotonin acetyltransferase: A diurnal cycle maintained in vitro and its regulation by light, Can. J. Biochem 57: 700.PubMedCrossRefGoogle Scholar
- Wald, G., Brown, P. K., and Gibbons, I. R., 1963, The problem of visual excitation, J. Opt. Soc. Am 53: 20.PubMedCrossRefGoogle Scholar
- Zimmerman, N. H., and Menaker, M., 1975, Neural connections of sparrow pineal: Role in circadian control of activity, Science 190: 477.PubMedCrossRefGoogle Scholar
- Zimmerman, N. H., and Menaker, M., 1979, The pineal: A pacemaker within the circadian system of the house sparrow, Proc. Natl. Acad. Sci. U.S.A 76: 999.PubMedCrossRefGoogle Scholar