Glycoproteins, Glycolipids and Cellular Recognition

  • Roger Harrison
  • George G. Lunt
Part of the Tertiary Level Biology book series (TLB)

Abstract

animal cell plasma membranes contain asymmetrically-distributed glycoproteins and glycolipids which extend their carbohydrate-bearing portions directly into the extracellular environment, and there is currently a great deal of interest in the possible involvement of such molecules in the many aspects of cell recognition. The cell membranes of bacteria, fungi and higher plants are, in general, in contact with a complex carbohydrate-rich cell wall which complicates characterization of sugar-containing plasma membrane components. The cell wall, moreover, shields the underlying membrane from direct interaction with the cell surroundings, and the present chapter will accordingly be mainly concerned with the structure and function of the glycolipids and glycoproteins of animal cell plasma membranes.

Keywords

Sialic Acid Blood Group Thyroid Stimulate Hormone Membrane Glycoprotein Histocompatibility Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook, G. M. W. and Stoddart, R. W. (1973) Surface Carbohydrates of the Eukaryotic Cell, Academic Press, London.Google Scholar
  2. Hughes, R. C. (1976) Membrane Glycoproteins—A Review of Structure and Function, Butterworths, London.Google Scholar
  3. Cook, G. M. W. (1976) ‘Techniques for the analysis of membrane carbohydrates’ in Biochemical Analysis of Membranes (ed. A. H. Maddy ), Chapman and Hall, London, 283–351.Google Scholar
  4. Chen, W. W. and Lennarz, W. J. (1978) ‘Enzymic excision of glucosyl units linked to the oligosaccharide chains of glycoproteins’ J. Biol. Chem., 253, 5780–5785.Google Scholar
  5. Parodi, A. J. and Leloir, L. F. (1979) ‘ The role of lipid intermediates in the glycosylation of proteins in the eucaryotic cell’ Biochim. Biophys. Acta, 559, 1–37.CrossRefGoogle Scholar
  6. Robbins, P. W., Hubbard, S. C., Turco, S. J. and Wirth, D. F. (1977) ‘ Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins’ Cell, 12, 893–900.CrossRefGoogle Scholar
  7. Staneloni, R. J. and Leloir, L. F. (1979) ‘ The biosynthetic pathway of the asparagine-linked oligosaccharides of glycoproteins’ Trends in Biochem. Sci., 65–67.Google Scholar
  8. Sturgess, J., Moscarello, M. and Schachter, H. (1978) ‘ The structure and biosynthesis of membrane glycoproteins’ in Current Topics in Membranes and Transport, vol. 11 (ed. F. Bronner et al.), Academic Press, New York, 15–104.Google Scholar
  9. Tabas, I. and Kornfeld, S. (1978) ‘ The synthesis of complex-type oligosaccharides. III’ J. Biol. Chem., 253, 7779–7786.Google Scholar
  10. Waechter, C. J. and Lennarz, W. J. (1976) ‘ The role of polyprenol-linked sugars in glycoprotein synthesis’ Ann. Rev. Biochem., 45, 95–112.CrossRefGoogle Scholar
  11. Hakomori, S-I, Watanabe, K. and Laine, R. A. (1977) ‘ Glycosphingolipids with blood group A, H and I activity and their changes associated with ontogenesis and oncogenesis’ Pure App. Chem., 49, 1215–1227.CrossRefGoogle Scholar
  12. Hanfland, P. (1975) ‘ Characterization of B and H blood group active glycosphingolipids from human B erythrocyte membranes’ Chem. Phys. Lipids, 15, 105–124.CrossRefGoogle Scholar
  13. Gardas, A. (1978) ‘ Structure of an (A-blood group)—active glycolipid isolated from human erythrocytes’ Eur. J. Biochem., 89, 471–473.CrossRefGoogle Scholar
  14. Watkins, W. M. (1972) ‘ Blood group specific substances’ in Glycoproteins, their Composition, Structure and Function, Part B (ed. A. Gottschalk), Elsevier, Amsterdam, 830–891.Google Scholar
  15. Blumenfeld, O. O. and Admany, A. M. (1978) ‘ Structural polymorphism within the amino-terminal region of MM, NN and MN glycoproteins (glycophorins) of the human erythrocyte membrane’ Proc. Natl. Acad. Sci., 75, 2727–2731.CrossRefGoogle Scholar
  16. Dahr, W., Uhlenbruck, G., Janssen, E. and Schmalisch, R. (1977) ‘ Different N-terminal amino acids in the MN-glycoprotein from MM and NN erythrocytes’ Hum. Genet., 35, 335–343.CrossRefGoogle Scholar
  17. Furthmayr, H. (1978) ‘ Structural comparison of glycophorins and immunochemical analysis of genetic variants’ Nature, 271, 519–524.CrossRefGoogle Scholar
  18. Lisowska, E. and Wasniowska, K. (1978) Immunochemical characterization of cyanogen bromide degradation products of M and N blood group glycopeptides’ Eur. J. Biochem., 88, 247–252.CrossRefGoogle Scholar
  19. Sadler, J. E., Paulson, J. C. and Hill, R. L. (1979) ‘ The role of sialic acid in the expression of human MN blood group antigens’ J. Biol. Chem., 254, 2112–2119.Google Scholar
  20. Springer, G. F. and Yang, H. J. (1977) ‘ Isolation and partial characterization of blood group M- and N- specific glycopeptides and oligosaccharides from human erythrocytes’ Immunochemistry, 14, 497–502.CrossRefGoogle Scholar
  21. Tomita, M., Furthmayr, H. and Marchesi, V. T. (1978) ‘ Primary structure of human erythrocyte glycophorin A. Isolation and characterization of peptides and complete amino acid sequence’ Biochemistry, 17, 4756–4770.CrossRefGoogle Scholar
  22. Barnstaple, C. J., Jones, E. A. and Crumpton, M. J. (1978) ‘ Isolation, structure and genetics of HLA-A, -B, -C and -DRw (Ia) antigens’ Br. Med. Bull., 34, 241–246.Google Scholar
  23. Bodmer, W. F. (1978) ‘ The HLA system: introduction’ Br. Med. Bull., 34, 213–216.Google Scholar
  24. Cunningham, B. A. (1977) ‘ The structure and function of histocompatibility antigens’ Scientific American, 237, 96–107.CrossRefGoogle Scholar
  25. Letarte, M. (1978) ‘ Glycoprotein antigens of murine lymphocytes’ in Current Topics in Membranes and Transport, vol. 11 (ed. F. Bronner et al.), Academic Press, New York, 463–512.Google Scholar
  26. McKenzie, I. F. C., Clarke, A. and Parish, C. R. (1977) ‘ Ia antigenic specificities are oligosaccharide in nature: Hapten inhibition studies’ J. Exp. Med., 145, 1039–1053.CrossRefGoogle Scholar
  27. Snary, D., Barnstaple, C., Bodmer, W. F., Goodfellow, P. and Crumpton, M. J. (1977) ‘ Human la antigens—purification and molecular structure’ Cold Spring Harbor Symp. Quant. Biol., 41, 379–386.CrossRefGoogle Scholar
  28. Springer, T. A., Kaufman, J. F., Terhorst, C., and Strominger, J. L. (1977) ‘ Purification and structural characterization of human HLA-linked B-cell antigens’ Nature, 268, 213–218.CrossRefGoogle Scholar
  29. Williams, A. F., McMaster, R., Standring, R. and Sunderland, C. A. (1978) ‘ Differentiation antigens and glycoproteins of lymphocytes’ Trends in Biochem. Sci., 272–274.Google Scholar
  30. Draper, R. K., Chin, D. and Simon, M. 1. (1978) ‘ Diphtheria toxin has the properties of a lectin’ Proc. Natl. Acad. Sci., USA, 75, 261–265.CrossRefGoogle Scholar
  31. Kohn, L. D. (1978) ‘ Relationships in the structure and function of receptors for glycoprotein hormones, bacterial toxins and interferon’ in Receptors and Recognition, vol. AS (ed. P. Cuatrecasas and M. L. Greaves ), Chapman and Hall, London, 133–212.Google Scholar
  32. Pappenheimer, Jr., A. M. (1978) ‘ Diphtheria: molecular biology of an infectious process’ Trends in Biochem. Sci., N220–224.Google Scholar
  33. van Heyningen, W. E. (1974) ‘ Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin‘ Nature, 249, 415–417.CrossRefGoogle Scholar
  34. Aminoff, D., Bell, W. C. and Vorder Bruegge, W. G. (1978) ‘ Cell surface carbohydrate recognition and the viability of erythrocytes in circulation’ in Cell Surface Carbohydrates and Biological Recognition (ed. V. J. Marchesi et al.), Alan R. Liss, Inc., New York, 569–581.Google Scholar
  35. Ashwell, G. and Morel], A. G. (1977) ‘ Membrane glycoproteins and recognition phenomena’ Trends in Biochem. Sci., 76–78.Google Scholar
  36. Gesner, B. M., Woodruff, J. J. and McCluskey, R. T. (1969) ‘ An autoradiographic study of the effect of neuraminidase or trypsin on transfused lymphocytes’ Amer. J. Pathol., 57, 215–224.Google Scholar
  37. Paulson, J. C., Hill, R. L., Tanabe, T. and Ashwell, G. (1977) ‘ Reactivation of asialo-rabbit liver binding protein by resialylation with ß-D-galactoside a2– 6 sialyltransferase’ J. Biol. Chem., 252, 8624–8628.Google Scholar
  38. Gottschalk, A., Belyavin, G. and Biddle, F. (1972) ‘ Glycoproteins as influenza virus haemagglutinin inhibitors and as cellular virus receptors’ in Glycoproteins, Their Composition, Structure and Function Part B (ed. A. Gottschalk ), Elsevier, Amsterdam, 1082–1096.Google Scholar
  39. Helenius, A., Morein, B., Fries, E., Simons, K., Robinson, P., Schirrmacher, V., Terhorst, C. and Strominger, J. L. (1978) ‘ Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus’ Proc. Natl. Acad. Sci., USA, 75, 3846–3850.Google Scholar
  40. Ofek, I., Beachey, E. H. and Sharon, N. (1978) ‘ Surface sugars of animal cells as deter- minants of recognition in bacterial adherence’ Trends in Biochem. Sci., 159–160.Google Scholar
  41. Waterfield, M. D., Espelie, K. and Elder, K. (1979) ‘ Structure of the haemagglutinin of influenza virus’ Br. Med. Bull., 35, 57–63.Google Scholar
  42. Frazier, W. A. (1978) ‘The role of cell surface components in the morphogenesis of the cellular slime molds’ Trends in Biochem. Sci., 130–133.Google Scholar
  43. Glaser, L. (1978) ‘ Cell-cell adhesion studies with embryonal and cultured cells’ Rev. Physiol. Pharmacol., 83, 89–122.Google Scholar
  44. Hynes, R. O. and Destree, A. T. (1978) ‘Relationships between fibronectin (LETS protein) and actin’ Cell, 15, 875–886.CrossRefGoogle Scholar
  45. Pena, S. D. J. and Hughes, R. C. (1978) ‘Fibronectin-plasma membrane interaction in the adhesion and spreading of hamster fibroblasts’ Nature, 276, 80–83.CrossRefGoogle Scholar
  46. Rees, D. A., Lloyd, C. W. and Thom, D. (1977) ‘ Control of grip and stick in cell adhesionGoogle Scholar
  47. through lateral relationships of membrane glycoproteins’ Nature,267 124–128.Google Scholar
  48. Thom, D., Powell, A. J. and Rees, D. A. (1979) ‘ Mechanisms of cellular adhesion IV. Role of serum glycoproteins in fibroblast spreading on glass’ J. Cell. Sci., 35, 281–305.CrossRefGoogle Scholar
  49. Yamada, K. M. and Olden, K. (1978) ‘Fibronectins—adhesive glycoproteins of cell surface and blood’ Nature, 275, 179–184.CrossRefGoogle Scholar
  50. Bramwell, M. E. and Harris, H. (1979) ‘Some further information about the abnormal membrane glycoprotein associated with malignancy’ Proc. R. Soc. London, B, 203, 93–99.CrossRefGoogle Scholar
  51. Hakomori, S-I. (1975) ‘ Structures and organization of cell surface glycolipids. Dependency on cell growth and malignant transformation’ Biochim. Biophys. Acta, 417, 55–89.Google Scholar
  52. Nicolson, G. L. (1976) ‘ Trans-membrane control of the receptors on normal and tumour cells. II. Surface changes associated with transformation and malignancy’ Biochim. Biophys. Acta, 458, 1–72.Google Scholar
  53. Nicolson, G. L. (1979) ‘Cancer metastasis’ Scientific American, 240, 50–60. Old, L. J. (1977) ‘ Cancer immunology’ Scientific American, 236, 62–79.Google Scholar

Copyright information

© R. Harrison, G. G. Lunt 1980

Authors and Affiliations

  • Roger Harrison
    • 1
  • George G. Lunt
    • 1
  1. 1.School of Biological SciencesUniversity of BathUK

Personalised recommendations