Advertisement

Reproduction, Development, and Growth

  • Sol M. Michaelson
  • James C. Lin
Chapter

Abstract

Reproductive efficiency concerns the capacity of the dam or sire to effect a conception and bear and rear offspring. Changes in this capacity might be due to alterations in behavior, physiology, or morphology.

Keywords

Microwave Radiation Microwave Theory Tech Microwave Exposure Colonic Temperature Fetal Resorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baranski, S., and P. Czerski (1976) Biological Effects of Microwaves. Dowden, Hutchinson & Ross, Stroudsburg, Pa.Google Scholar
  2. Barron, C. I., and A. A. Baraff (1958) Medical considerations of exposure to microwaves (radar). J. Am. Med. Assoc. 168: 1194.CrossRefGoogle Scholar
  3. Barron, C. I., A. A. Love, and A. A. Baraff (1955) Physical evaluation of personnel exposed to microwave emanations. J. Aviat. Med. 26: 442.Google Scholar
  4. Bereznitskaya, A. N. (1968) The effect of 10-centimeter and ultrashort waves on the reproductive function of female mice. Gig. Tr. Prof Zabol. 9: 33.Google Scholar
  5. Bereznitskaya, A. N. (1972) Research on the reproductive function in female mice under the impact of low-intensity radio waves of different ranges. In: Industrial Health and Biological Effects of Radio Frequency Electromagnetic Waves. Material of the Fourth All-Union Symposium, Moscow.Google Scholar
  6. Bereznitskaya, A. N., and I. M. Kazbekov (1973) Studies on the reproduction and testicular microstructure of mice exposed to microwaves. In: Biological Effects of Radiofrequency Electromagnetic Fields, Z. V. Gordon (ed.). No. 4, Moscow, pp. 221229 (JPRS 63321, 1974 ).Google Scholar
  7. Bereznitskaya, A. N., and T. Z. Rysina (1974) Embryotropic effects of microwaves. In: Biological Effects of Radiofrequency Electromagnetic Fields, Z. V. Gordon (ed.). JPRS 63321, pp. 168–174.Google Scholar
  8. Berman, E., J. B. Kinn, and H. B. Carter (1978) Observations of mouse fetuses after irradiation with 2.45 GHz microwaves. Health Phys. 35: 791.CrossRefGoogle Scholar
  9. Berman, E., H. B. Carter, and D. House (1980) Tests of mutagenesis and reproduction in male rats exposed to 2450 MHz (CW) microwaves. Bioelectromagnetics 1: 65.CrossRefGoogle Scholar
  10. Berman, E., H. B. Carter, and D. House (1981) Observations of rat fetuses after irradiation with 2450 MHz (CW) microwaves. J. Microwave Power 16: 9.Google Scholar
  11. Boak, R. A., C. M. Carpenter, and S. L. Warren (1932) Studies on the physiological effects of fever temperatures. II. The effect of repeated short wave (30 meter) fevers on growth and fertility of rabbits. J. Exp. Med. 56: 725.CrossRefGoogle Scholar
  12. Budd, R. A., J. Laskey, and C. Kelly (1970) Hematological response of fetal rats following 2450 MHz microwave irradiation. In: Radiation Bio-effects Summary Report, January—December 1970, D. M. Hodge (ed.). HEW, PHS, BRH Publ. BRH/DBE 70–7 (December), p. 161.Google Scholar
  13. Cameron, J. A. (1943) Termination of early pregnancy by artificial fever. Proc. Soc. Exp. Biol. Med. 52: 76.Google Scholar
  14. Carpenter, R. L., and E. M. Livstone (1971) Evidence for nonthermal effects of microwave radiation: Abnormal development of irradiated insect pupae. IEEE Trans. Microwave Theory Tech. MTT-19: 173.Google Scholar
  15. Chernovetz, M. E., D. R. Justesen, N. W. King, and J. E. Wagner (1975) Tetratology, survival, and reversal learning after fetal irradiation of mice by 2450 MHz microwave energy. J. Microwave Power 10: 391.Google Scholar
  16. Chernovetz, M. E., D. R. Justesen, and A. F. Oke (1977) A teratologic study of the rat: Microwave and infrared radiations compared. Radio Sci. 12 (6S): 191.CrossRefGoogle Scholar
  17. Chernovetz, M. E., D. R. Justesen, and D. M. Levinson (1979a) Acceleration and deceleration of fetal growth of rats by 2450 MHz microwave radiation. In: Electromagnetic Fields in Biological Systems, S. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 175–193.Google Scholar
  18. Chernovetz, M. E., D. Reeves, and D. R. Justesen (1979b) Teratology in rats exposed to 2450 MHz microwaves at intense and intermediate dose rates. Presented at the Biolectromagnetics Symposium, Seattle.Google Scholar
  19. Conover, D., J. M. Lary, and E. Foley (1978) Induction of teratogenic effects in rats by 27.12 MHz RF radiation. Presented at the 1978 Symposium on Electromagnetic Fields in Biological Systems, Ottawa, Canada.Google Scholar
  20. Conover, D. L., J. M. Lary, and P. L. Hanser (1980) Thermal threshold for teratogenic response in rats irradiated at 27.12 MHz. Bioelectromagnetics 1: 204.Google Scholar
  21. Davidson, J. A., B. A. Kondra, and M. A. K. Hamid (1976) Effects of microwave radiation on eggs, embryos and chickens. Can. J. Anim. Sci. 56: 709.CrossRefGoogle Scholar
  22. Deichmann, W. B., M. Keplinger, and E. Bernal (1963) Effects on dogs of chronic exposure to microwave radiation. J. Occup. Med. 5: 418.Google Scholar
  23. de Seguin, L., and G. Castelian (1947) Action of ultrahigh frequency radiation (wavelength 21 cm) on temperature of small laboratory animals. C. R. Acad. Sci. 224: 1662.Google Scholar
  24. Dietzel, F. (1975) Effects of non-ionizing electro-magnetic radiation on the development and intrauterine implantation of the rat. Ann. N. Y. Acad. Sci. 247: 367.CrossRefGoogle Scholar
  25. Dietzel, F., and W. Kern (1970) Abortion following ultra-shortwave hyperthermia animal experiments. Arch. Gynaekol. 209: 445.CrossRefGoogle Scholar
  26. Dietzel, F., W. Kern, and R. Steckenmesser (1972) Deformity and intrauterine death after short-wave therapy in early pregnancy in experimental animals. Muench. Med. Wochenschr. 114: 228.Google Scholar
  27. Dumansky, Y. D., A. M. Serdyuk, C. I. Litvinova, L. A. Tomashevskaya, and V. M. Popovich (1972) Experimental research on the biological effects of 12-centimeter low-intensity waves. In: Health in Inhabited Localities. Ed. II, Kiev, p. 29.Google Scholar
  28. Edwards, M. J. (1967) Congenital defects in guinea pigs following induced hyperthermia during gestation. Arch. Pathol. 84: 42.Google Scholar
  29. Edwards, M. J. (1968) Congenital malformations in the rat following induced hyperthermia during gestation. Teratology 1: 173.zbMATHCrossRefGoogle Scholar
  30. Edwards, M. J. (1969) Congenital defects in guinea pigs: Fetal resorptions, abortions, and malformations following induced hyperthermia during early gestation. Teratology 2: 313.CrossRefGoogle Scholar
  31. Ely, T. S., D. E. Goldman, J. Hearon, R. B. Williams, and H. M. Carpenter (1957) Heating characteristics of laboratory animals exposed to ten-centimeter microwaves. U.S. Nay. Med. Res. Inst. (Res. Rep. Proj. NM 001–056.13.02). IEEE Trans. Biomed. Eng. BME-11: 123 (1964).Google Scholar
  32. Fahim, M. N., Z. Fahim, R. Der, D. G. Hal, and J. Harman (1975) Heat in male contraception (hot water 60°C, infrared, microwave and ultrasound). Contraception 11 (5): 549.CrossRefGoogle Scholar
  33. Follis, R. H., Jr. (1946) Studies on the biological effect of high frequency radio waves (radar). Am. J. Physiol. 147: 281.Google Scholar
  34. Gage, M. I., E. Berman, and J. B. Kinn (1979) Videotape observation of rats and mice during an exposure to 2450 MHz microwave radiation. Radio Sci. 14 (6S): 227.CrossRefGoogle Scholar
  35. Garrison, L. H. (1940) The effect of fever on the development of the rat incisor. J. Dent. Res. 19: 215.CrossRefGoogle Scholar
  36. Gorodetskaya, S. F. (1963) The effect of centimeter radio waves on mouse fertility. Fiziol. Zh. (Kiev) 9: 394.Google Scholar
  37. Gorodetskaya, S. F. (1964) The influence of SHF electromagnetic fields on fertility, peripheral blood picture, conditioned reflexes, and morphology of internal organs of white mice. In: Biological Action of Ultrasound and SHF-UHF Electromagnetic Oscillations, A. A. Gorodetskii (ed.). Nauk Dumka, Kiev, p. 80.Google Scholar
  38. Granberry, W. M., and J. M. Janes (1963) The lack of effect of microwave diathermy on bone of the growing dog. J. Bone J. Surg. 45A: 773.Google Scholar
  39. Gruenwald, P. (1947) Mechanisms of abnormal development. Arch. Pathol. 44: 398.Google Scholar
  40. Gunn, S. A., T. C. Gould, and W. A. D. Anderson (1961) The effect of microwave radiation on morphology and function of rat testis. Lab. Invest. 10: 301.Google Scholar
  41. Haidt, S. J., and A. H. McTighe (1973) The effect of chronic, low-level microwave radiation on the testicles of mice. In: 1973 IEEE-G-MTT International Microwave Symposium, S. W. Maley (ed.) pp. 324–325.Google Scholar
  42. Hamrick, P. E., and D. I. McRee (1975) Exposure of the Japanese quail embryo to 2.45 GHz microwave radiation during the second day of development. J. Microwave Power 10: 211.Google Scholar
  43. Hsu, C. (1948) Influence of temperature on development of rat embryos. Anat. Rec. 100: 79.CrossRefGoogle Scholar
  44. Imig, C. J., J. D. Thomson, and H. M. Hines (1948) Testicular degeneration as a result of microwave irradiation. Proc. Soc. Exp. Biol. Med. 69: 382.Google Scholar
  45. Jensh, R. P., and J. Ludlow (1980) Behavioral teratology: Application in low dose chronic microwave irradiation studies. In: Advances in the Study of Birth Defects, Vol. 4, T. V. N. Persand (ed.). MTP Press, Lancaster, U.K., pp. 135–162.Google Scholar
  46. Jensh, R. P., J. Ludlow, L. Weinburg, W. H. Vogel, T. Rudder, and R. L. Brent (1977) Teratogenic effects on rat offspring of non-thermal chronic prenatal microwave irradiation. Teratology 15 (2): 14A.Google Scholar
  47. Jensh, R. P., J. Ludlow, L. Weinburg, W. H. Vogel, T. Rudder, and R. L. Brent (1978a) Studies concerning the post natal effects of protracted low dose prenatal 915 MHz microwave radiation. Teratology 17: 21A.Google Scholar
  48. Jensh, R. P., J. Ludlow, L. Weinburg, W. H. Vogel, T. Rudder, and R. L. Brent (1978b) Studies concerning the protracted prenatal exposure to a non-thermal level of 2450 MHz microwave radiation in the pregnant rat. Teratology 17: 48A.Google Scholar
  49. Jensh, R. P., W. H. Vogel, J. Ludlow, and T. McHugh (1979) Studies concerning the effects of low dosage prenatal 6000 MHz microwave radiation on growth and development in the rat. Teratology 19 (2): 32A.Google Scholar
  50. Johnson, R. B., S. Mizumori, and R. H. Lovely (1978) Adult behavioral deficits in rats exposed prenatally to 918-MHz microwaves. In: Developmental Toxicology of Energy-Related Pollutants, D. D. Mahlum, M. R. Sikov, P. L. Hackett, and F. D. Andrew (eds.). Department of Energy Symposium Series 47, pp. 281–299.Google Scholar
  51. Kalant, H. (1959) Physiologic hazards of microwave radiation, survey of published literature. Can. Med. Assoc. J. 81: 575.Google Scholar
  52. Kaplan, J. N. (1981) Study of the lethal effects of microwaves in the developing squirrel monkey. Final report for Contract No. 68–02–3210, U.S. Environmental Protection Agency.Google Scholar
  53. Krueger, W. F., A. J. Giarola, J. W. Bradley, and A. Shrekenhamer (1975) Effects of electromagnetic fields on fecundity in the chicken. Ann. N.Y. Acad. Sci. 247: 323.CrossRefGoogle Scholar
  54. Lacy, K. K., J. M. Desesso, and J. M. Lary (1980a) A comparison of the teratogenic effects of radiofrequency radiation and hyperthermia: Gross evaluation. Teratology 21: 51A.Google Scholar
  55. Lacy, K. K., J. M. Dessesso, T. W. Sadler, and J. M. Lary (1980b) A comparison of the teratogenic effects of radiofrequency radiation and hyperthermia: Light micro.,copic evaluation. Teratology 21: 52A.Google Scholar
  56. Lary, J. M., D. L. Conover, E. D. Foley, and P. L. Hanser (1979) Teratogenicity of 27.12 MHz radiofrequency radiation in rats. Teratology 19: 36A.Google Scholar
  57. Lary, J. M., D. L. Conover, E. D. Foley, and P. L. Hanser (1980) Teratogenicity of 27.12 MHz radiofrequency radiation in rats. Bioelectromagnetics 1: 402.Google Scholar
  58. Laskey, J., D. Dawes, and M. Howes (1970) Progress report on 2450 MHz irradiation of pregnant rats and the effect on the fetus. In: Radiation Bio-effects Summary Report, January—December 1970, D. M. Hodge (ed.). HEW, PHS, BRH Publ. BRH/DBE 70–7 (December), pp. 167–173.Google Scholar
  59. Leach, W. M. (1980) Genetic, growth, and reproductive effects of microwave radiation. Bull. N.Y. Acad. Med. 56: 249.Google Scholar
  60. Letowski, A. (1967) Badania doswiadzalne nad wplywem aparatury radarowej na ustroj szczurow ze szczegolnym narzadow plciowych zenskich. Ginekol. Pol. Supl. 7: 51.Google Scholar
  61. Letowski, A., T. Bartoszewicz, and A. Lankienicki (1971) Proba oceny metoda cytohormonalna i histochemiczna estrogenow u szczurzyc ciczarnych napromienianych microfalami. Lek. Wojsk. 47: 551.Google Scholar
  62. Lin, J. C., J. C. Nelson, and M. E. Ekstrom (1979) Effects of repeated exposure to 148 MHz radiowaves on growth and hematology of mice. Radio Sci. 14: 173.Google Scholar
  63. Lindauer, G. A., L. M. Liu, G. W. Skewes, and F. J. Rosenbaum (1974) Further experiments seeking evidence of nonthermal biological effects of microwave radiation. IEEE Trans. Microwave Theory Tech. MTT-22: 790.Google Scholar
  64. Liu, L. M., F. J. Rosenbaum, and W. F. Pickard (1975) The relation of teratogenesis in Tenebrio molitor to the incidence of low level microwaves. IEEE Trans. Microwave Theory Tech. MTT-23: 929.Google Scholar
  65. McRee, D. I., and P. E. Hamrick (1977) Exposure of Japanese quail embryos to 2.45 GHz microwave radiation during development. Radiat. Res. 71: 355.CrossRefGoogle Scholar
  66. McRee, D. I., P. E. Hamrick, J E Zinkl, P. Thaxton, and C. R. Parkhurst (1975) Some effects of exposure of the Japanese quail embryo to 2.45 GHz microwave radiation. Ann. N.Y. Acad. Sci. 247: 377.CrossRefGoogle Scholar
  67. Marha, K. (1970) Maximum admissible values of HF and UHF electromagnetic radiation at work places in Czechoslovakia. In: Biological Effects and Health Implications of Microwave Radiation, S. F. Cleary (ed.). Symposium Proceedings, HEW Publ. BRH/DBE 70–2, p. 188.Google Scholar
  68. Marha, K., J. Musil, and H. Tuha (1968) Electromagnetic Fields and the Living Environment. State Health Publishing House, Prague (Transi. SBN 911302–13–7, San Francisco Press, 1971 ).Google Scholar
  69. Martson, L. V., and V. M. Voronina (1976) Experimental study of the effect of a series of phosphoroorganic pesticides (Dipterex and Imidan) on embryogenesis. Environ. Health Perspect. 13: 121.CrossRefGoogle Scholar
  70. Michaelson, S. M., R. Guillet, M. A. Catallo, J. Small, G. Inamine, and F. W. Heggeness (1976) Influence of 2450 MHz microwaves on rats exposed in utero. J. Microwave Power 11: 165.Google Scholar
  71. Michaelson, S. M., R. Guillet, and F. W. Heggeness (1978) The influence of microwave exposure on functional maturation of the rat. In: Developmental Toxicology of Energy-Related Pollutants, D. D. Mahlum, M. R. Sikov, P. L. Hackett, and F. D. Andrew (eds.). Department of Energy Symposium Series 47, pp. 300–316.Google Scholar
  72. Miro, L., R. Loubiere, and A. Pfister (1965) Studies of visceral lesions observed in mice and rats exposed to UHF waves: A particular study of the effects of these waves on the reproduction of these animals. Rev. Med. Aeronaut. (Paris) 4: 37.Google Scholar
  73. Muraca, G. J., Jr., E. S. Ferri, and F. L. Buchta (1977) A study of the effects of microwave irradiation of the rat testes. II. In: Biological Effects of Electromagnetic Waves, Vol. 1, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 484–494.Google Scholar
  74. Nawrot, P. S., D. I. McRee, and R. E. Staples (1981) Effects of 2.45 GHz CW microwave radiation on embryofetal development in mice. Teratology 24: 303.CrossRefGoogle Scholar
  75. Nelson, J. C., J. C. Lin, and M. E. Ekstrom (1979) Teratogenic effects of RF radiation on mice. Presented at Bioelectromagnetics Symposium, Seattle.Google Scholar
  76. O’Connor, M. E. (1980) Mammalian teratogenesis and radiofrequency fields. Proc. IEEE 68: 56.CrossRefGoogle Scholar
  77. Osborne, C. (1958) Studies on the biological effects of 200 mc. In: Proceedings of the Second Annual Tri-Service Conference on Biological Effects of Microwave Energy, E. G. Pattishall and F. W. Banghart (eds.). University of Virginia, Charlottesville, p. 196.Google Scholar
  78. Osborne, C. (1959) Studies on the biological effects of 200 mc. In: Investigators’ Conference on Biological Effects of Electronic Radiating Equipments. Rome Air Development Center, Air Research and Development Command, Rome, N.Y., ASTIA Document No. AD 214 693, p. 20.Google Scholar
  79. Pay, P. L., A. F. Anderson, and G. L. Jessup, Jr. (1978) A comparative study of the effects of microwave radiation and conventional heating on the reproductive capacity of Drosophila melanogaster. Radiat. Res. 76: 271.CrossRefGoogle Scholar
  80. Perraud, J. (1976) Levels of spontaneous malformations in the CD rat and CD-1 mouse. Lab. Anim. Sci. 26: 293.Google Scholar
  81. Povzhitkov, A. A., N. V. Tyagin, and A. M. Grebieshetchnikova (1961) Vlijanie sverchvysokotchastronogo impulsnogo elektromagnitnogo polja na zatchatie i tetchenie bieremennosti u belych myshei. Byull. Eksp. Biol. Med. 5: 103.Google Scholar
  82. Prausnitz, S., and C. Süsskind (1962) Effects of chronic microwave irradiation on mice. IRE Trans. Bio-Med. Electron. 9: 104.CrossRefGoogle Scholar
  83. Preskorn, S. H., W. P. Edwards; and D. R. Justesen (1978) Retarded tumor growth and greater longevity in mice after irradiation by 2450 MHz microwaves. J. Surg. Oncol. 10: 438.CrossRefGoogle Scholar
  84. Pucak, G. J., C. S. Lee, and A. S. Zaino (1977) Effects of prolonged high temperature on testicular development and fertility in the male rat. Lab. Anim. Sci. 27: 76.Google Scholar
  85. Rosenthal, D. S. and S. C. Beering (1968) Hypogonadism after microwave radiation, J. Am. Med. Assoc. 205: 345.CrossRefGoogle Scholar
  86. Rugh, R., and M. McManaway (1976) Anesthesia as an effective agent against the production of congenital anomalies in mouse fetuses exposed to electromagnetic radiation. J. Exp. Zool. 197: 363.CrossRefGoogle Scholar
  87. Rugh, R., and M. McManaway (1977) Mouse fetal sensitivity to microwave radiation. Congenital Anomalies (Senten Ijo) 17: 39.Google Scholar
  88. Rugh, R., E. I. Ginns, H. S. Ho, and W. M. Leach (1974) Are microwaves teratogenic? In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 98–107.Google Scholar
  89. Rugh, R., E. I. Ginns, H. S. Ho, and W. M. Leach (1975) Responses of the mouse to microwave radiation during estrous cycle and pregancy. Radiat. Res. 62: 225.CrossRefGoogle Scholar
  90. Rugh, R., H. Ho, and M. McManaway (1976) The relation of dose rate of microwave radiation to the time of death and total absorbed dose in the mouse. J. Microwave Power 11: 279.Google Scholar
  91. Saunders, R. D., and C. I. Kowalczuk (1981a) The effect of acute far-field exposure at 2.45 GHz on the mouse testes. Int. J. Radial. Biol. 39: 587.CrossRefGoogle Scholar
  92. Saunders, R. D., and C. I. Kowalczuk (1981b) Effects of 2.45 GHz microwave radiation and heat on mouse spermatogenic epithelium. Int. J. Radiat. Biol. 40: 623.CrossRefGoogle Scholar
  93. Sharp, J. S., and C. J. Paperiello (1971) The effects of microwave exposure on thymidine-H3 uptake in albino rats. Radial. Res. 45: 434.CrossRefGoogle Scholar
  94. Shively, J. N. (1970) A pilot study of effects of microwave exposure on ontogenesis. In: Radiation Bio-effects Summary Report, January—December 1970, D. M. Hodge (ed.). HEW, PHS, BRH Publ. BRH/DBE 70–7 (December), p. 201.Google Scholar
  95. Shively, J. N., R. D. Phemister, and G. P. Epling (1967) Alterations in the fine structure of the mature retina of dogs irradiated as neonates. Exp. Eye Res. 6: 278.CrossRefGoogle Scholar
  96. Shore, M. L., R. P. Felten, and A. Lamanna (1977) The effect of repetitive prenatal low-level microwave exposure on development in the rat. In: Biological Effects and Measurement of Radiofrequency/Microwaves, D. G. Hazzard (ed.). HEW Publ. (FDA) 77–8026, pp. 280–289.Google Scholar
  97. Smialowicz, R. J., J. B. Kinn, and J. A. Elder (1979) Prenatal exposure of rats to 2450-MHz CW microwave radiation: Effects on lymphocytes. Radio Sci. 14 (6S): 147.CrossRefGoogle Scholar
  98. Stavinoha, W. B., A. Modak, M. A. Medina, and A. E. Gass (1975) Growth and development of neonatal mice exposed to high-frequency electromagnetic fields. Report SAM-TR-75–51, School of Aerospace Medicine, Brooks AFB, Texas.Google Scholar
  99. van Demark, W. R., and J. R. Free (1973) Temperature effects. In: The Testis, Vol. III, A. D. Johnson, W. R. Gomes, and M. L. van Demark (eds.). Academic Press, New York, pp. 233–312.Google Scholar
  100. Van Ummersen, C. A. (1961) The effect of 2450 me radiation on the development of the chick embryo. In: Biological Effects of Microwave Radiation, Vol. 1, M. F. Peyton (ed.). Plenum Press, New York, p. 201.Google Scholar
  101. Van Ummersen, C. A. (1963) An Experimental Study of Development Abnormalities Induced in the Chick Embryo by Exposure to Radio Frequency Waves. Ph.D. dissertation, Tufts University, Medford, Mass.Google Scholar
  102. Varma, M. M., and E. A. Traboulay, Jr. (1975) Biological effects of microwave radiation on the testes of Swiss mice. Experientia 31: 301.CrossRefGoogle Scholar
  103. Wilson, G. J. (1959) Experimental studies on congenital malformations. J. Chronic Dis. 10: 111.CrossRefGoogle Scholar
  104. Wise, C. W., B. Castleman, and A. L. Watkins (1949) Effect of diathermy on bone growth in the albino rat. J. Bone Joint Surg. 31A: 487.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations