Radio and Microwave Dielectric Properties of Biological Materials

  • Sol M. Michaelson
  • James C. Lin


Dielectric properties of tissue materials have been extensively studied (Schwan, 1957, 1963, 1965). A basic understanding has been achieved of the mechanisms and structures that determine the electromagnetic properties of tissue materials. It has been demonstrated that tissue materials are nearly nonmagnetic, and thus have permeabilities close to that of free space and are independent of frequency. On the other hand, the electrical properties of tissue materials have been shown to display a characteristic dependence on frequency. They possess very high dielectric constants compared with many other types of homogeneous liquids and solids. This is because biological tissues are nonhomogeneous, and are composed of cells, macromolecules, and other membrane-bound substances. An example of the frequency-dependent character of tissue materials is given in Fig. 4-1. There are three principal regions of dispersions described as α, β, and γ, respectively. Each dispersion is defined by either a single relaxation frequency or a small group of relaxation frequencies.


Dielectric Constant Dielectric Property Biological Material High Water Content Microwave Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman, P. L., and D. S. Dittmer (eds.) (1964) The Biology Data Book. Fed. Am. Soc. Exp. Biol., Washington, D.C., pp. 392–396.Google Scholar
  2. Boettcher, C. J. F. (1952) Theory of Electric Polarization. Elsevier, Amsterdam.Google Scholar
  3. Burdette, E. C., F. L. Cain, and J. Seals (1980) In vivo probe measurement technique for determining dielectric properties of VHF through microwave frequencies. IEEE Trans. Microwave Theory Tech. MTT-28: 414.Google Scholar
  4. Cole, K. S. (1968) Membranes, Ions, and Impulses. University of California Press, Berkeley.Google Scholar
  5. Cook, H. F. (1951) Dielectric behavior of some types of human tissues at microwave frequencies. Br. J. Appl. Phys. 2: 295.CrossRefGoogle Scholar
  6. Cook, H. F. (1952) A comparison of dielectric behavior of pure water and human blood at microwave frequencies. Br. J. Appl. Phys. 3: 249.CrossRefGoogle Scholar
  7. Cook, H. F. (1951) Dielectric behavior of human blood at microwave frequencies. Nature 168: 247.CrossRefGoogle Scholar
  8. Daniel, V. V. (1967) Dielectric Relaxation. Academic Press, New York.Google Scholar
  9. Debye, P. (1929) Polar Molecules. Reinhold, New York.zbMATHGoogle Scholar
  10. Eisenberg, D., and W. Kauzmann (1969) The Structure and Properties of Water. Clarendon Press, Oxford.Google Scholar
  11. England, T. S. (1950) Dielectric properties of human body for wavelengths in the 1–10 cm range. Nature 166: 480.CrossRefGoogle Scholar
  12. Foster, K. R., J. L. Schepps, R. D. Story, and H. P. Schwan (1979) Dielectric properties of brain tissue between 0.01 and 10 GHz. Phys. Med. Biol. 24: 1177.CrossRefGoogle Scholar
  13. Franks, F. (1972) Water —A Comprehensive Treatise, Vol. 1. Plenum Press, New York.Google Scholar
  14. Fröhlich, H. (1958) Theory of Dielectrics. Clarendon Press, Oxford.zbMATHGoogle Scholar
  15. Grant, E. H., R. J. Sheppard, and G. P. South (1978) Dielectric Behavior of Biological Molecules in Solution. Clarendon Press, Oxford.Google Scholar
  16. Guy, A. W., M. D. Webb, A. F. Emery, R. H. Willard, and J. C. Lin (1974) High frequency EM fields phantom models of man and measured electrical properties of tissues materials. Science Report No. 3, Bioelectromagnetics Research Laboratories, University of Washington.Google Scholar
  17. Guyton, A. C. (1969) Function of the Human Body. Saunders, Philadelphia.Google Scholar
  18. Hasted, J. B. (1973) Aqueous Dielectric. Chapman & Hall, London.Google Scholar
  19. Hasted, J. B., and S. H. M. El Sabeh (1953) The dielectric properties of water in solution. Trans. Faraday Soc. 49: 1003.CrossRefGoogle Scholar
  20. Hill, N. E., W. E. Vaughan, A. H. Price, and M. Davies (1969) Dielectric Properties and Molecular Behavior. Van Nostrand, Prenceton, N.J.Google Scholar
  21. Jordan, E. C., and K. G. Balmain (1968). Electromagnetic Waves and Radiating Systems. McGraw-Hill, New York.Google Scholar
  22. Lin, J. C. (1975) Microwave properties of fresh mammalian brain tissues at body temperature. IEEE Trans. Biomed. Eng. BME-22: 74.Google Scholar
  23. Lin, J. C. (1978) Microwave biophysics. In Microwave Bioeffects and Radiation Safety, M. Stuchly (ed.). International Microwave Power Institute, Alberta, Canada, pp. 15–54.Google Scholar
  24. Lin, J. C., and J. H. Jacobi (1975) Computer-controlled measurement of microwave properties of biomaterials. Int. Microwave Power Symp. Digest, pp. 265–271.Google Scholar
  25. Pauly, H., and H. P. Schwan (1964) The dielectric properties of the bovine eye lens. IEEE Trans. Biomed. Eng. BME-11: 103.Google Scholar
  26. Presman, A. S. (1970) Electromagnetic Fields and Life. Plenum Press, New York.Google Scholar
  27. Roberts, S., and A. R. von Hippel (1946) A new method for measuring dielectric constant and loss in the range of centimeter waves. J. Appl. Phys. 17: 610.CrossRefGoogle Scholar
  28. Schepps, J. L., and K. R. Foster (1980) The UHF and microwave dielectric properties of normal and tumor tissues: variation in dielectric properties with tissue water content. Phys. Med. Biol. 25: 1149.CrossRefGoogle Scholar
  29. Schepps, J. L., and K. R. Foster (1981) UHF and microwave dielectric properties of normal and tumor tissues. Digest Microwave Power Inst., Toronto, Canada, pp. 34–36.Google Scholar
  30. Schwan, H. P. (1957) Electrical properties of tissues and cell suspensions. Adv. Biol. Med. Phys. 4: 147.Google Scholar
  31. Schwan, H. P. (1958) Survey of microwave absorption characteristics of body tissues. In: Proceedings of the Second Annual Tri-Service Conference on Biological Effects of Microwave Energy, E. G. Pattishall and F. W. Banghart (eds.). University of Virginia, Charlottesville, pp. 126–145.Google Scholar
  32. Schwan, H. P. (1963). Electric characteristics of tissues. Biophysik 1: 198.CrossRefGoogle Scholar
  33. Schwan, H. P. (1965) Biophysics of diathermy. In: Therapeutic Heat and Cold, S. Licht (ed.). Waverly Press, Baltimore, pp. 63–125.Google Scholar
  34. Schwan, H. P. (1975) Dielectric properties of biological materials and interaction of microwave fields at the cellular and molecular level. In: Fundamental and Applied Aspects of Nonionizing Radiation, S. M. Michaelson, M. W. Miller, R. Magin, and E. L. Carstensen (eds.). Plenum Press, New York, p. 3.CrossRefGoogle Scholar
  35. Schwan, H. P. (1977) Field interaction with biological matter. Ann. N.Y. Acad. Sci. 303: 198.Google Scholar
  36. Schwan, H. P., and K. R. Foster (1980) RF-field interaction with biological systems: electrical properties and biophysical mechanisms. Proc. IEEE 68: 104.CrossRefGoogle Scholar
  37. Schwan, H. P., and K. Li (1953) Capacity and conductivity of body tissues at ultrahigh frequencies. Proc. IRE 41: 1735.CrossRefGoogle Scholar
  38. Schwan, H. P., and K. Li (1956) Hazard due to total body irradiation by radar. Proc. IRE 44: 1572.CrossRefGoogle Scholar
  39. Schwan, H. P., R. J. Sheppard, and E. H. Grant (1976) Complex permittivity of water. J. Chem. Phys. 64: 2257.CrossRefGoogle Scholar
  40. Song, C. W., M. S. Kang, J. G. Rhee, and S. H. Levitt (1980) Effect of hyperthermia on vascular function in normal and neoplastic tissues. Ann. N.Y. Acad. Sci. 335: 35.CrossRefGoogle Scholar
  41. Tai, C. T. (1961) Characteristics of linear antennas. In: Antenna Engineering Handbook, H. Jasik (ed.). McGraw-Hill, New York, p. 3. 2.Google Scholar
  42. Toler, J., and J. Seals (1977) RF Dielectric Properties Measurement System- Human and Animal Data. NIOSH Research Dep., Cincinnati, Ohio.Google Scholar
  43. von Hippel, A. R. (1954) Dielectric and Applications. MIT Press, Cambridge, Mass.Google Scholar
  44. Westman, H. P. (ed.) (1968). Reference Data for Radio Engineers. Sams, Indianapolis, Ind.Google Scholar
  45. Wind, M., and H. Rapaport (1955) Handbook of Microwave Measurements. Polytechnic Press, New York.Google Scholar
  46. Zore, V. A., D. D. Kimerfield, V. V. Sudzdaleva, and Y. S. Genkins (1967) Complex dielectric permeability in the frequency range 100–500 Mcs of human blood serum in normal conditions and in certain diseases, Biophysik 12: 142.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations