Skip to main content

Abstract

Dielectric properties of tissue materials have been extensively studied (Schwan, 1957, 1963, 1965). A basic understanding has been achieved of the mechanisms and structures that determine the electromagnetic properties of tissue materials. It has been demonstrated that tissue materials are nearly nonmagnetic, and thus have permeabilities close to that of free space and are independent of frequency. On the other hand, the electrical properties of tissue materials have been shown to display a characteristic dependence on frequency. They possess very high dielectric constants compared with many other types of homogeneous liquids and solids. This is because biological tissues are nonhomogeneous, and are composed of cells, macromolecules, and other membrane-bound substances. An example of the frequency-dependent character of tissue materials is given in Fig. 4-1. There are three principal regions of dispersions described as α, β, and γ, respectively. Each dispersion is defined by either a single relaxation frequency or a small group of relaxation frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, P. L., and D. S. Dittmer (eds.) (1964) The Biology Data Book. Fed. Am. Soc. Exp. Biol., Washington, D.C., pp. 392–396.

    Google Scholar 

  • Boettcher, C. J. F. (1952) Theory of Electric Polarization. Elsevier, Amsterdam.

    Google Scholar 

  • Burdette, E. C., F. L. Cain, and J. Seals (1980) In vivo probe measurement technique for determining dielectric properties of VHF through microwave frequencies. IEEE Trans. Microwave Theory Tech. MTT-28: 414.

    Google Scholar 

  • Cole, K. S. (1968) Membranes, Ions, and Impulses. University of California Press, Berkeley.

    Google Scholar 

  • Cook, H. F. (1951) Dielectric behavior of some types of human tissues at microwave frequencies. Br. J. Appl. Phys. 2: 295.

    Article  Google Scholar 

  • Cook, H. F. (1952) A comparison of dielectric behavior of pure water and human blood at microwave frequencies. Br. J. Appl. Phys. 3: 249.

    Article  Google Scholar 

  • Cook, H. F. (1951) Dielectric behavior of human blood at microwave frequencies. Nature 168: 247.

    Article  Google Scholar 

  • Daniel, V. V. (1967) Dielectric Relaxation. Academic Press, New York.

    Google Scholar 

  • Debye, P. (1929) Polar Molecules. Reinhold, New York.

    MATH  Google Scholar 

  • Eisenberg, D., and W. Kauzmann (1969) The Structure and Properties of Water. Clarendon Press, Oxford.

    Google Scholar 

  • England, T. S. (1950) Dielectric properties of human body for wavelengths in the 1–10 cm range. Nature 166: 480.

    Article  Google Scholar 

  • Foster, K. R., J. L. Schepps, R. D. Story, and H. P. Schwan (1979) Dielectric properties of brain tissue between 0.01 and 10 GHz. Phys. Med. Biol. 24: 1177.

    Article  Google Scholar 

  • Franks, F. (1972) Water —A Comprehensive Treatise, Vol. 1. Plenum Press, New York.

    Google Scholar 

  • Fröhlich, H. (1958) Theory of Dielectrics. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Grant, E. H., R. J. Sheppard, and G. P. South (1978) Dielectric Behavior of Biological Molecules in Solution. Clarendon Press, Oxford.

    Google Scholar 

  • Guy, A. W., M. D. Webb, A. F. Emery, R. H. Willard, and J. C. Lin (1974) High frequency EM fields phantom models of man and measured electrical properties of tissues materials. Science Report No. 3, Bioelectromagnetics Research Laboratories, University of Washington.

    Google Scholar 

  • Guyton, A. C. (1969) Function of the Human Body. Saunders, Philadelphia.

    Google Scholar 

  • Hasted, J. B. (1973) Aqueous Dielectric. Chapman & Hall, London.

    Google Scholar 

  • Hasted, J. B., and S. H. M. El Sabeh (1953) The dielectric properties of water in solution. Trans. Faraday Soc. 49: 1003.

    Article  Google Scholar 

  • Hill, N. E., W. E. Vaughan, A. H. Price, and M. Davies (1969) Dielectric Properties and Molecular Behavior. Van Nostrand, Prenceton, N.J.

    Google Scholar 

  • Jordan, E. C., and K. G. Balmain (1968). Electromagnetic Waves and Radiating Systems. McGraw-Hill, New York.

    Google Scholar 

  • Lin, J. C. (1975) Microwave properties of fresh mammalian brain tissues at body temperature. IEEE Trans. Biomed. Eng. BME-22: 74.

    Google Scholar 

  • Lin, J. C. (1978) Microwave biophysics. In Microwave Bioeffects and Radiation Safety, M. Stuchly (ed.). International Microwave Power Institute, Alberta, Canada, pp. 15–54.

    Google Scholar 

  • Lin, J. C., and J. H. Jacobi (1975) Computer-controlled measurement of microwave properties of biomaterials. Int. Microwave Power Symp. Digest, pp. 265–271.

    Google Scholar 

  • Pauly, H., and H. P. Schwan (1964) The dielectric properties of the bovine eye lens. IEEE Trans. Biomed. Eng. BME-11: 103.

    Google Scholar 

  • Presman, A. S. (1970) Electromagnetic Fields and Life. Plenum Press, New York.

    Google Scholar 

  • Roberts, S., and A. R. von Hippel (1946) A new method for measuring dielectric constant and loss in the range of centimeter waves. J. Appl. Phys. 17: 610.

    Article  Google Scholar 

  • Schepps, J. L., and K. R. Foster (1980) The UHF and microwave dielectric properties of normal and tumor tissues: variation in dielectric properties with tissue water content. Phys. Med. Biol. 25: 1149.

    Article  Google Scholar 

  • Schepps, J. L., and K. R. Foster (1981) UHF and microwave dielectric properties of normal and tumor tissues. Digest Microwave Power Inst., Toronto, Canada, pp. 34–36.

    Google Scholar 

  • Schwan, H. P. (1957) Electrical properties of tissues and cell suspensions. Adv. Biol. Med. Phys. 4: 147.

    Google Scholar 

  • Schwan, H. P. (1958) Survey of microwave absorption characteristics of body tissues. In: Proceedings of the Second Annual Tri-Service Conference on Biological Effects of Microwave Energy, E. G. Pattishall and F. W. Banghart (eds.). University of Virginia, Charlottesville, pp. 126–145.

    Google Scholar 

  • Schwan, H. P. (1963). Electric characteristics of tissues. Biophysik 1: 198.

    Article  Google Scholar 

  • Schwan, H. P. (1965) Biophysics of diathermy. In: Therapeutic Heat and Cold, S. Licht (ed.). Waverly Press, Baltimore, pp. 63–125.

    Google Scholar 

  • Schwan, H. P. (1975) Dielectric properties of biological materials and interaction of microwave fields at the cellular and molecular level. In: Fundamental and Applied Aspects of Nonionizing Radiation, S. M. Michaelson, M. W. Miller, R. Magin, and E. L. Carstensen (eds.). Plenum Press, New York, p. 3.

    Chapter  Google Scholar 

  • Schwan, H. P. (1977) Field interaction with biological matter. Ann. N.Y. Acad. Sci. 303: 198.

    Google Scholar 

  • Schwan, H. P., and K. R. Foster (1980) RF-field interaction with biological systems: electrical properties and biophysical mechanisms. Proc. IEEE 68: 104.

    Article  Google Scholar 

  • Schwan, H. P., and K. Li (1953) Capacity and conductivity of body tissues at ultrahigh frequencies. Proc. IRE 41: 1735.

    Article  Google Scholar 

  • Schwan, H. P., and K. Li (1956) Hazard due to total body irradiation by radar. Proc. IRE 44: 1572.

    Article  Google Scholar 

  • Schwan, H. P., R. J. Sheppard, and E. H. Grant (1976) Complex permittivity of water. J. Chem. Phys. 64: 2257.

    Article  Google Scholar 

  • Song, C. W., M. S. Kang, J. G. Rhee, and S. H. Levitt (1980) Effect of hyperthermia on vascular function in normal and neoplastic tissues. Ann. N.Y. Acad. Sci. 335: 35.

    Article  Google Scholar 

  • Tai, C. T. (1961) Characteristics of linear antennas. In: Antenna Engineering Handbook, H. Jasik (ed.). McGraw-Hill, New York, p. 3. 2.

    Google Scholar 

  • Toler, J., and J. Seals (1977) RF Dielectric Properties Measurement System- Human and Animal Data. NIOSH Research Dep., Cincinnati, Ohio.

    Google Scholar 

  • von Hippel, A. R. (1954) Dielectric and Applications. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Westman, H. P. (ed.) (1968). Reference Data for Radio Engineers. Sams, Indianapolis, Ind.

    Google Scholar 

  • Wind, M., and H. Rapaport (1955) Handbook of Microwave Measurements. Polytechnic Press, New York.

    Google Scholar 

  • Zore, V. A., D. D. Kimerfield, V. V. Sudzdaleva, and Y. S. Genkins (1967) Complex dielectric permeability in the frequency range 100–500 Mcs of human blood serum in normal conditions and in certain diseases, Biophysik 12: 142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michaelson, S.M., Lin, J.C. (1987). Radio and Microwave Dielectric Properties of Biological Materials. In: Biological Effects and Health Implications of Radiofrequency Radiation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4614-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4614-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3202-0

  • Online ISBN: 978-1-4757-4614-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics