Radio and Microwave Dosimetry and Measurement

  • Sol M. Michaelson
  • James C. Lin


Progress in understanding electromagnetic interaction with biological systems is closely linked to the advances in measurement capability. Measurement provides the means to describe physical phenomena in quantitative terms. As our ability to describe these phenomena with precision and reliability increases, the opportunity of advancing our understanding of the laws of nature increases and the capability of making use of this understanding also increases. Furthermore, the growing significance of international cooperation to arrive at a meaningful safety standard has made valid measurement a necessary means for the international exchange of scientific and engineering results.


Power Density Electric Field Strength Microwave Energy Anechoic Chamber Microwave Theory Tech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, S. J. (1975) Measurement of power absorption by human phantoms immersed in radio-frequency fields. Ann. N.Y. Acad. Sci. 247: 494.Google Scholar
  2. Asian, E. (1970) Electromagnetic radiation survey meter. IEEE Trans. Instrum. Meas. IM-19: 368.Google Scholar
  3. Asian, E. (1972) Broad-band isotropic electromagnetic radiation monitor. IEEE Trans. Instrum. Meas. IM-21: 421.Google Scholar
  4. Asian, E. (1975) Simplify leakage probe calibration. Microwaves 14: 52.Google Scholar
  5. Bahl, I. J., S. S. Stuchly, and M. A. Stuchly (1980) A microstrip antenna for medical application. IEEE MTT-S Int. Microwave Symp. Digest, Washington, D.C., pp. 358-360.Google Scholar
  6. Baird, R. C. (1974) Methods of calibrating microwave hazard meters. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 228–236.Google Scholar
  7. Bowman, R. R. (1971) An isotropic electric energy-density probe for high-level fields. Presented at International Union Radio Science, USNC Meeting, April, Washington, D.C.Google Scholar
  8. Bowman, R. R. (1976) A probe for measuring temperature in radio-frequency heated material. IEEE Trans. Microwave Theory Tech. MTT-24: 43.Google Scholar
  9. Cetas, T. C. (1975) Temperature measurement in microwave diathermy fields: Principles and probes. In: Proc. Int. Symp. Cancer Therapy by Hyperthermia and Radiation, Washington, D.C., pp. 193–203.Google Scholar
  10. Chernovetz, M. E., D. R. Justesen, N. W. King, and J. E. Wagner (1975) Teratology, survival and reversal learning after fetal irradiation of mice by 2430-MHz microwave energy. J. Microwave Power 10: 391.Google Scholar
  11. Cheung, A. Y., and D. W. Koopman (1976) Experimental development of simulated biomaterials for dosimetry studies of hazardous microwave radiation. IEEE Trans. Microwave Theory Tech. MTT-24: 669.Google Scholar
  12. Chou, C. K., and A. W. Guy (1978) Effects of electromagnetic fields on isolated nerve and muscle preparations. IEEE Trans. Microwave Theory Tech. MTT-26: 141.Google Scholar
  13. Collin, R. E. (1966) Foundations for Microwave Engineering. McGraw—Hill, New York. Courtney, K., J. C. Lin, A. W. Guy, and C. K. Chou (1975) Microwave effect on rabbit superior cervical ganglion. IEEE Trans. Microwave Theory Tech MIT-23: 809.Google Scholar
  14. Crawford, M. L. (1974) Generation of standard EM fields using TEM transmission cells. IEEE Trans. Electromagn. Compat. 16: 189.CrossRefGoogle Scholar
  15. Donaldson, E. E., W. R. Free, D. W. Robertson, and J. A. Woody (1978) Field measurement made in an enclosure. Proc. IEEE 66: 464.CrossRefGoogle Scholar
  16. Elder, J. A., J. S. Ali, M. D. Long, and G. E. Anderson (1976) A coaxial air-line microwave exposure system: Respiratory activity of mitochondria irradiated at 2–4 GHz. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson, and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 352–365.Google Scholar
  17. Emerson, W. H. (1973) Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans. Antennas Propag. 21: 484.CrossRefGoogle Scholar
  18. Friend, A. W., and H. Howe (1980) A microstrip microwave biological exposure system. IEEE MTT-S Int. Microwave Symp. Digest, Washington, D.C., pp. 345–346.Google Scholar
  19. Guy, A. W. (1971) Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models. IEEE Trans. Biomed. Eng. BME-19: 205.Google Scholar
  20. Guy, A. W. (1977) A method for exposing cell cultures to electromagnetic fields under controlled conditions of temperature and field strength. Radio Sci. 12: 87S.Google Scholar
  21. Guy, A. W., and C. K. Chou (1976) System for quantitative chronic exposure of a population of rodents to UHF fields. In: Biological Effects of Electromagnetic Waves, Vol. II, C. C. Johnson, and M. L. Shore (eds.) HEW Publ. (FDA) 77–8011, pp. 389–411.Google Scholar
  22. Guy, A.W., and J. F. Lehmann (1966) On the determination of an optimum microwave diathermy frequency for a direct contact applicator. IEEE Trans. Biomed. Eng. BME-13: 76.Google Scholar
  23. Guy, A. W., J. F. Lehmann, J. A. McDougall, and C. C. Sorensen (1968) Studies on therapeutic heating by electromagnetic energy. In: Thermal Problems in Biotechnology. ASME, New York, pp. 26–45.Google Scholar
  24. Guy, A. W., J. F. Lehmann, J. B. Stonebridge, and C. C. Sorensen (1978) Development of a 915-MHz direct-contact applicator for therapeutic heating tissues. IEEE Trans. Microwave Theory Tech. MTT-26: 550.Google Scholar
  25. Guy, A. W., C. K. Chou, J. F. Lehmann, W. Farnham, and J. A. McDougall (1979) Specific absorption rates in mice exposed to 918 and 2450 MHz circularly polarized guided EM fields. Presented at Bioelectromagnetics Symp., Seattle.Google Scholar
  26. Hill, D. A., (1Q82) Human whole-body radiofrequency absorption studies using a TEM-cell exposure system. IEEE Trans. Microwave Theory Tech. MTT-30: 1847.Google Scholar
  27. Ho, H. S., E. E. Ginn, and C. L. Christman (1973) Environmentally controlled waveguide irradiation facility. IEEE Trans. Microwave Theory Tech. MTT-21: 837.Google Scholar
  28. Ho, H. S., M. R. Foster, and M. L. Swicord (1976) Microwave irradiation apparatus design and dosimetry. In: Biological Effects of Electromagnetic Waves, Vol. II, C. C. Johnson, and M. L. Shore (eds.). HEW Publ. (FDA) 77–8011, pp. 423–434.Google Scholar
  29. Hunt, E. L., and R. D. Phillips (1972) Absolute dosimetry for whole animal experiments. In: Joint Army/Georgia Inst. Tech. Microwave Dosimetry Workshop, Walter Reed Army Institute of Research, Washington, D.C., pp. 74–77.Google Scholar
  30. Iskander, M. F., and C. H. Durney (1980) Electromagnetic techniques for medical diagnosis: A review. Proc. IEEE 68: 126.CrossRefGoogle Scholar
  31. Justesen, D. R. (1975) Toward a prescriptive grammar for the radiobiology of non-ionizing radiation. J. Microwave Power 10: 343.Google Scholar
  32. Justesen, D. R., and N. W. King (1970) Behavioral effects of low-level microwave irradiation in the closed space situation. In: Biological Effects and Health Implications of Microwave Radiation, S. F. Cleary (ed.). HEW Publ. BRH/DBE 70–2, pp. 154–179.Google Scholar
  33. Justesen, D. R., D. M. Levinson, R. L. Clarke, and N. W. King (1971) A microwave oven for behavioral and biological research. J. Microwave Power 6: 237.Google Scholar
  34. Kantor, G., D. M. Witters, and J. W. Greiser (1978) The performance of a new direct-contact applicator for microwave diathermy. IEEE Trans. Microwave Theory Tech. MTT-26: 563.Google Scholar
  35. Kummer, W. H., and E. S. Gillespie (1978) Antenna measurements-1978. Proc. IEEE 66: 483.CrossRefGoogle Scholar
  36. Larsen, L. E., R. A. Moore, and J. A. Acevedo (1974) A microwave decoupled brain-temperature transducer. IEEE Trans. Microwave Theory Tech. MTT-22: 438.Google Scholar
  37. Larson, E. B. (1979) Technique for producing standard EM fields from 10 kHz to 10 GHz for evaluating radiation monitors. In: Electromagnetic Fields in Biological Systems, S. S. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 96–112.Google Scholar
  38. Lehmann, J. F., A. W. Guy, B. J. Delateur, J. B. Stonebridge, and C. G. Warren (1968) Heating patterns produced by short-wave diathermy using helical induction coil applicators. Arch. Phys. Med. Rehabil. 44: 193.Google Scholar
  39. Lehmann, J. F., A. W. Guy, C. G. Warren, B. J. Delateur, and J. B. Stonebridge (1970) Evaluation of a microwave contact applicator. Arch. Phys. Med. Rehabil. 51: 143.Google Scholar
  40. Lenox, R. H., O. P. Gandhi, J. L. Meyerhoff, and H. M. Grove (1976) A microwave applicator for in vivo rapid inactivation of enzymes in the central nervous system. IEEE Trans. Microwave Theory Tech. MTT-24: 58.Google Scholar
  41. Lin, J. C. (1976) A new system for investigating nonthermal effects of microwaves on cells. In: Biological Effects of Electromagnetic Waves, Vol. II, C. C. Johnson, and M. L. Shore (eds.) HEW Publ. (FDA) 77–8011, pp. 350–355.Google Scholar
  42. Lin, J. C., and M. F. Lin (1980) Studies on microwave and blood-brain barrier interaction. Bioelectromagnetics 1: 313.CrossRefGoogle Scholar
  43. Lin, J. C., and M. F. Lin (1981) Temperature-time profile in rats subjected to selective irradiation of the brain. IEEE Trans. Biomed. Eng. BME-28: 29.Google Scholar
  44. Lin, J. C., and W. D. Peterson (1977) Cytological effects of 2450 MHz CW microwave radiation. J. Bioeng. 1: 471.Google Scholar
  45. Lin, J. C., A. W. Guy, and C. C. Johnson (1973a) Power deposition in spherical model of man exposed to 1–20 MHz electromagnetic fields. IEEE Trans. Microwave Theory Tech. MTT-21: 791.Google Scholar
  46. Lin, J. C., A. W. Guy, and G. H. Kraft (1973b) Microwave selective brain heating. J. Microwave Power 8: 275.Google Scholar
  47. Lin, J. C., A. W. Guy, and L. R. Caldwell (1977) Thermographic and behavioral studies of rats in the near field of 918-MHz radiations. IEEE Trans. Microwave Theory Tech. MTT-25: 833.Google Scholar
  48. Lin, J. C., G. Kantor, and M. Grods (1978) A class of new microwave therapeutic applicators. Presented at URSI Int. Symp. Biol. Effects of Electromagnetic Waves, Helsinki; also in Radio Sci. (1982) 17: 119S.Google Scholar
  49. Lin, J. C., R. J. Meltzer, and F. K. Redding (1979a) Microwave-evoked brainstem potentials in cats. J. Microwave Power 14: 211.Google Scholar
  50. Lin, J. C., J. C. Nelson, and M. E. Ekstrom (1979b) Effects of repeated exposure to 148-MHz radio waves on growth and hematology of mice. Radio Sci. 14: 173S.Google Scholar
  51. Magin, R. L., and G. Kantor (1977) Comparison of heating patterns of small microwave applicators. J. Bioeng. 1: 493.Google Scholar
  52. Meyers, P. C., N. L. Sadewsky, and A. H. Barrett (1979) Microwave thermography: Principles, methods and clinical applications. J. Microwave Power 14: 105.Google Scholar
  53. Oliva, S. A., and G. N. Catravas (1977) A multiple-animal array for equal power density microwave irradiation. IEEE Trans. Microwave Theory Tech. MTT-25: 433.Google Scholar
  54. Osborne, S. J., and J. N. Frederick (1948) Microwave radiation: Heating of human and animal tissues by means of high-frequency current with wavelength of 12-cm. J. Am. Med. Assoc. 137: 1030.CrossRefGoogle Scholar
  55. Phillips, R. D., E. L. Hunt, and N. W. King (1975) Field measurements, absorbed dose, and biologic dosimetry of microwaves. Ann. N.Y. Acad. Sci. 247: 499.CrossRefGoogle Scholar
  56. Ramo, S., J. R. Whinnery, and T. Van Duzer (1965) Fields and Waves in Communication Electronics. Wiley, New York.Google Scholar
  57. Richardson, A. W., T. D. Duane, and H. M. Hines (1948) Experimental lenticular opacities produced by microwave irradiation. Arch. Phys. Med. 29: 765.Google Scholar
  58. Rozzell, T. C., C. C. Johnson, C. H. Durney, J. L. Lords, and R. G. Olsen (1974) A non-perturbing temperature sensor for measurements in electromagnetic fields. J. Microwave Power 9: 421.Google Scholar
  59. Wickersheim, K. A., and R. V. Alves (1981) A new optical technique for measuring temperature precisely in the presence of RF and microwave fields. Digest Microwave Power Symposium, Toronto, Canada, pp. 173–175.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations