Effects on Immune Responses

  • Sol M. Michaelson
  • James C. Lin


In recent years, considerable interest has developed on the relationship between microwave exposure and alteration of the immune response. The immune system is a physiological defense against a large spectrum of pathogens, including bacteria, viruses, fungi, parasites, tumors, toxins from organisms, and miscellaneous chemical substances. There is considerable adaptability and redundancy in the immune system. Thus, many perturbations of the immune response may not have clinical significance (Roberts, 1983). The immune response is initiated by the introduction of a foreign substance, called an antigen. The immune system can respond specifically and nonspecifically to challenge. It can recognize nonspecifically (as nonself) an offender that the host has not encountered previously. The responsive cells can produce antigen-specific or nonspecific mediators that recruit other immunocompetent cells. In fact, recruitment of cells and so-called “arming”or activation of cells are major features of the immune response. The true immune system consists of cells that are specialized for defense, broadly classified into phagocytic cells and lymphoid cells, and cell-derived humoral substances such as antibodies and complement (Roberts, 1983; Roberts et al., 1986).


Microwave Radiation Spleen Lymphocyte Exposed Mouse Microwave Exposure Colonic Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins, E., and P. Bodel (1972) Fever. N. Engl. J. Med. 286: 27.CrossRefGoogle Scholar
  2. Baranski, S. (1972) Effect of microwaves on the reactions of the white blood cell system. Acta Physiol. Pol. 23: 685.Google Scholar
  3. Baranski, S., and P. Czerski (1976) Biological Effects of Microwaves. Dowden, Hutchinson & Ross, Stroudsburg, Pa.Google Scholar
  4. Bennett, I. L., Jr., and A. Nicastri (1960) Fever as a mechanism of resistance. Bacteriol. Rev. 24: 16.Google Scholar
  5. Bodel, P., and H. Miller (1976) Pyrogen from mouse macrophages causes fever in mice. Proc. Soc. Exp. Biol. Med. 151: 93.Google Scholar
  6. Czerski, P. (1975) Microwave effects on the blood-forming system with particular reference to the lymphocyte. Ann. N.Y. Acad. Sci. 247: 232.CrossRefGoogle Scholar
  7. Czerski, P. E., E. Paprocka-Slonka, M. Siekierzynski, and A. Stolarska (1974a) Influence of microwave radiation on the hematopoietic system. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 67 - 74.Google Scholar
  8. Czerski, P., E. Paprocka-Slonka, and A. Stolarska (1974b) Microwave irradiation and the circadian rhythm of bone marrow cell mitosis. J. Microwave Power 9: 31.Google Scholar
  9. Frenkel, J. K., and S. A. Caldwell (1975) Specific immunity and nonspecific resistance to infection: Listeria, protozoa, and viruses in mice and hamsters. J. Infect. Dis. 131: 201.CrossRefGoogle Scholar
  10. Gordon, Z. V. (1966) Biological Effect of Microwaves in Occupational Hygiene. Izd. Med., Leningrad (TT 70-50087, NASA TT F-633, 1970 ).Google Scholar
  11. Hamrick, P. E. (1973) Thermal denaturation of DNA exposed to 2450 MHz CW microwave radiation. Radiat. Res. 56: 400.CrossRefGoogle Scholar
  12. Huang, A. T., M. E. Engle, J. A. Elder, J. B. Kinn, and T. R. Ward (1977) The effect of microwave radiation (2450 MHz) on the morphology and chromosomes of lymphocytes. Radio Sci. 12: 173.CrossRefGoogle Scholar
  13. Kluger, M. J., D. H. Ringler, and M. R. Anver (1975) Fever and survival. Science 188: 166.CrossRefGoogle Scholar
  14. Krupp, J. H. (1977) The relationship of thermal stress to immune response in mice exposed to 2.6 GHz radio-frequency radiation. In: Proceedings of the 1977 Annual Meeting USNC/URSI, Airlie, Va., p. 143.Google Scholar
  15. Larson, W. P., R. N. Bieter, M. Levine, and W. F. McLimans (1939) Temperature reactions in mice infected with pneumococci. Proc. Soc. Exp. Biol. Med. 42: 649.Google Scholar
  16. Liburdy, R. P. (1976) Effects of radiofrequency radiation on peripheral vascular permeability. Annu. Meet. Int. Union Radio Sci., Amherst, Mass. (Abstr. )Google Scholar
  17. Liburdy, R. P. (1977) Effects of radio-frequency radiation on inflammation. Radio Sci. 12 (6S): 179.CrossRefGoogle Scholar
  18. Liburdy, R. P. (1978) Suppression of allograft rejection by whole-body microwave hyperthermia. Fed. Proc. 37: 1281.Google Scholar
  19. Liburdy, R. P. (1979) Radiofrequency alters the immune system: Modulation of T- and B-lymphocyte levels and cell-mediated immunocompetence by hyperthermic radiation. Radiat. Res. 77: 34.CrossRefGoogle Scholar
  20. Lotz, W. G., and S. M. Michaelson (1978) Temperature and corticosterone relationship in microwave exposed rats. J. Appl. Physiol. 44: 438.Google Scholar
  21. Lovely, R. H., T. J. Sparks, A. W. Guy, and C. K. Chou (1979) Radiofrequency Field Exposure of Cultured Lymphocytes from Macaca mulata. Final Report SAM-TR-79-25, USAF School of Aerospace Medicine, Brooks AFB, Texas.Google Scholar
  22. Mandel, G. L. (1975) Effect of temperature on phagocytosis by human polymorphonuclear neutrophils. Infect. Immun. 12: 221.Google Scholar
  23. Michaelson, S. M. (1974) Effects of exposure to microwaves: Problems and perspectives. Environ. Health Perspect. 8: 133.Google Scholar
  24. Michaelson, S. M., R. A. E. Thomson, and J. W. Howland (1967) Biologic Effects of Microwave Exposure. Tech. Rep. RADC-TR-67-961, Griffiss AFB, Rome Air Development Center, Rome, N.Y.Google Scholar
  25. Monjan, A. A., and N. I. Collector (1977) Stress-induced modulation of the immune response. Science 197: 307.CrossRefGoogle Scholar
  26. Petrov, I. R. (ed.) (1970) Influence of Microwave Radiation on the Organism of Man and Animals. Meditsina Press, Leningrad (NASA TT F-708).Google Scholar
  27. Phillips, R. D., E. L. Hunt, R. D. Castro, and N. W. King (1975) Thermoregulatory, metabolic and cardiovascular response of rats to microwaves. J. Appl. Physiol. 38: 630.Google Scholar
  28. Prince, J. E., L. H. Mori, J. W. Frazer, and J. C. Mitchell (1972) Cytologic aspects of RF radiation in the monkey. Aerosp. Med. 43: 759.Google Scholar
  29. Roberts, N. J., Jr. (1979) Temperature and host defense. Microbiol. Rev. 43: 241.Google Scholar
  30. Roberts, N. J., Jr. (1983) Radiofrequency and microwave effects on immunological and hematopoietic systems. In: Biologic Effects of Low-Energy Electromagnetic Fields, M. Grandolfo, S. M. Michaelson, and A. Rindi (eds.). Plenum Press, New York, pp. 429 - 459.Google Scholar
  31. Roberts, N. J., Jr., and R. T. Steigbigel (1977) Hyperthermia and human leukocyte functions: Effects on response of lymphocytes to mitogen and antigen and bactericidal capacity of monocytes and neutrophils. Infect. Immun. 18: 673.Google Scholar
  32. Roberts, N. J., Jr., S. M. Michaelson, and S. T. Lu (1986) The biological effects of radiofrequency radiation: A critical review and recommendation. Int. J. Radiat. Biol. 50: 379.CrossRefGoogle Scholar
  33. Shandala, M. G., M. I. Rudnev, G. K. Vinogradov, N. C. Belonoshko, and N. M. Goncharova (1977) Immunological and hematological effects of microwaves at low power densities. In: Proceedings of the 1977 Annual Meeting of USNC/URSI, Airlie, Va., p. 85.Google Scholar
  34. Smialowicz, R. J. (1976) The effect of microwaves (2450 MHz) on lymphocyte blast transformation in vitro. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77-8010, pp. 472 - 483.Google Scholar
  35. Smialowicz, R. J., J. B. Kinn, and J. A. Elder (1979a) Perinatal exposure of rats to 2450 MHz (CW) microwave radiation: Effects on lymphocytes. Radio Sci. 14 (6S): 47.CrossRefGoogle Scholar
  36. Smialowicz, R. J., M. M. Riddle, P. L. Brugnolotti, J. M. Sperazza, and J. B. Kinn (1979b) Evaluation of lymphocyte function in mice exposed to 2450 MHz (CW) microwaves. In: Electromagnetic Fields in Biological Systems, S. S. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 122 - 152.Google Scholar
  37. Stodolnik-Baranska, W. (1974) The effects of microwaves on human lymphocyte cultures. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 189 - 195.Google Scholar
  38. Stossel, T. P. (1979) Introductory overview/tutorial on immunology. In: Program for Control of Electromagnetic Pollution of the Environment: The Assessment of Biologic Hazards of Nonionizing Electromagnetic Radiation, Fifth. NTIA Report 79-19, p. C-23.Google Scholar
  39. Szmigielski, S., and M. Janiak (1977) Alteration of cell-mediated immunity by local microwave hyperthermia (43°C) of Guerin epitheioma. In: Proceedings of the 1977 Annual Meeting of USNC/URSI, Airlie, Va, p. 141.Google Scholar
  40. Szmigielski, S., J. Jeljaszewicz, and M. Wiranowska (1975) Acute staphylococcal infections in rabbits irradiated with 3 GHz microwaves. Ann. N.Y. Acad. Sci. 247: 305.CrossRefGoogle Scholar
  41. Szmigielski, S., M. Luczak, M. Janiak, M. Kobus, and B. Laskowska (1976) Effect of 3 GHz microwaves on experimental viral infections in mice (herpes, vaccinia). In: Proceedings of the 1976 Annual Meeting of USNC/URSI, Amherst, Mass., p. 117.Google Scholar
  42. Szmigielski, S., G. Pulverer, W. Hryniewicz, and M. Janiak (1977) Inhibition of tumor growth in mice by microwave hyperthermia, Streptolysis S and colcemide. Radio Sci. 12 (6S): 185.CrossRefGoogle Scholar
  43. Volkova, A. P., and P. O. Fukalova (1974) Changes in certain protective reactions of an organism under the influence of SW in experimental and industrial conditions. In: Biological Effects of Radiofrequency Electromagnetic Fields, Z. V. Gordon (ed.). JPRS 63321, pp. 168 - 174.Google Scholar
  44. Wiktor-Jedrzejczak, W., A. Ahmed, P. Czerski, W. M. Leach, and K. W. Sell (1977a) Immunologic response of mice to 2450 MHz microwave radiation: Overview of immunology and empirical studies of lymphoid spleen cells. Radio Sci. 12 (6S): 209.CrossRefGoogle Scholar
  45. Wiktor-Jedrzejczak, W., A. Ahmed, K. W. Sell, P. Czerski, and W. M. Leach (1977b) Microwaves induce an increase in the frequency of complement receptor-bearing lymphoid spleen cells in mice. J. Immunol. 118: 1499.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations