Behavioral Effects

  • Sol M. Michaelson
  • James C. Lin


As previously indicated, microwaves can produce sensations of warmth and sound in humans. In other species, they also can serve as cues, they may be avoided, and they can disrupt ongoing behavior. These actions appear to be due to heat produced by energy absorption. The rate of absorption depends on the microwave parameters and the electrical and geometric properties of the subject. At “low levels” of exposure, microwaves can produce changes in behavior without large, or even measurable, changes in body temperature. Thermoregulatory behavior may respond to those “low levels” of heat, and thereby affect other behavior occurring concurrently. There are no reliable data demonstrating that behavioral effects of microwaves depend on any mechanism other than reactions to heat (Stern, 1980).


Microwave Radiation Behavioral Effect Squirrel Monkey Operant Behavior Pulse Microwave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair, E. R. (1979) Microwave modification of thermoregulatory behavior: Threshold and suprathreshold effects. Bioelectromagnetics Symposium, Seattle, p. 331.Google Scholar
  2. Adair, E. R., and B. W. Adams (1980) Microwaves modify thermoregulatory behavior in squirrel monkey. Bioelectromagnetics 1: 1.CrossRefGoogle Scholar
  3. Baranski, S., and Z. Edelwejn (1968) Studies on the combined effects of microwaves and some drugs on bioelectric activity of rabbit CNS. Acta Physiol. Pol. 19: 37.Google Scholar
  4. Bligh, J., and K. G. Johnson (1973) Glossary of terms for thermal physiology. J. Appl. Physiol. 35: 941.Google Scholar
  5. Carlisle, H. J. (1970) Thermal reinforcement and temperature regulation. In: Animal Psychophysics: The Design and Conduct of Sensory Experiments, W. C. Stebbins (ed.). Prentice—Hall, Englewood Cliffs, N.J., pp. 211–229.Google Scholar
  6. Corbit, J. D. (1970) Behavioral regulation of body temperature. In: Physiological and Behavioral Temperature Regulation, J. Hardy, A. P. Gagge, and J. A. J. Stolwijk (eds.). Thomas, Springfield, Ill., pp. 777–830.Google Scholar
  7. Corbit, J. D. (1973) Thermal motivation. Neurosci. Res. Program Bull. 11 (4): 317.Google Scholar
  8. D’Andrea, J. A., O. P. Gandhi, and J. L. Lords (1977) Behavioral and thermal effects of microwave radiation at resonant and nonresonant wave lengths. Radio Sci. 12 (6S): 251.CrossRefGoogle Scholar
  9. D’Andrea, J. A., O. Cuellar, O. P. Gandhi, J. L. Lords, and H. C. Nielson (1978) Behavioral thermoregulation in the whiptail lizard (Cnemidophophorus tigris) under 2450 MHz CW microwaves. In: Proc. Biol. Eff. E.M. Waves. XIX Gen. Assembly. Int. Union Radio Sci., Helsinki, p. 88.Google Scholar
  10. D’Andrea, J. A., O. P. Gandhi, J. L. Lords, C. H. Durney, C. C. Johnson, and L. Astle (1979) Physiological and behavioral effects of chronic exposure to 2450 MHz microwaves. J. Microwave Power 14: 351.Google Scholar
  11. de Lorge, J. (1976) Operant behavior and colonic temperature of Squirrel Monkeys (Saimiri sciureus) during microwave irradiation. NAMRL-1222, Naval Aerospace Medical Research Laboratory, Pensacola, Fla.Google Scholar
  12. de Lorge, J. (1977) Operant behavior and colonic temperature of Squirrel Monkeys (Saimiri sciureus) during microwave irradiation. NAMRL-1236, Naval Aerospace Medical Research Laboratory, Pensacola, Fla.Google Scholar
  13. de Lorge, J. (1978) Disruption of behavior in mammals of three different sizes exposed to microwaves: Extrapolation to larger mammals. In: Electromagnetic Fields in Biological Systems, S. S. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 215–228.Google Scholar
  14. de Lorge, J. (1979) Operant behavior and rectal temperature of squirrel monkey during 2.45 GHz microwave irradiation. Radio Sci. 14: 217.CrossRefGoogle Scholar
  15. Diachenko, J. A., and W. C. Milroy (1975) The effects of high power pulsed and low level CW microwave radiation on an operant behavior in rats. Naval Surface Weapons Center, Dahlgren Laboratory, Dahlgren, Va.Google Scholar
  16. Edelwejn, Z. (1968) An attempt to assess the functional state of the cerebral synapses in rabbits exposed to chronic irradiation with microwaves. Acta Physiol. Pol. 19: 897.Google Scholar
  17. Frey, A. H., and S. R. Feld (1975) Avoidance by rats of illumination with low-power nonionizing electromagnetic energy. J. Comp. Physiol. Psychol. 89: 183.CrossRefGoogle Scholar
  18. Gage, M. (1979) Behavior in rats after exposure to various power densities of 2450 MHz microwaves. Neurobehay. Toxicol. 1: 137.Google Scholar
  19. Galloway, W. D. (1975) Microwave dose—response relationships on two behavioral tasks. Ann N.Y. Acad. Sci. 247: 410.CrossRefGoogle Scholar
  20. Galloway, W. D., and M. Waxier (1977) Interaction between microwave and neuroactive compounds. In: Biological Effects and Measurement of Radiofrequency/Microwaves, D. G. Hazzard (ed.). HEW Publ. (FDA) 77–8026, pp. 62–66.Google Scholar
  21. Gillard, J. B., B. Servantie, G. Bertharion, A. M. Servantie, J. K. C. Obrenovitch, and J. C. Perrin (1977) Study of the microwave-induced perturbations of the behavior by the open-field test in the white rat. In: Biological Effects of Electromagnetic Waves, Vol. II, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 175–186.Google Scholar
  22. Grove, A. M., D. M. Levinson, and D. R. Justesen (1979) Attempts to cue successful escape from a highly intense microwave field by photic stimulation. In: Bioelectromagnetics Symposium. Seattle, p. 454.Google Scholar
  23. Hainsworth, F. R. (1967) Saliva spreading, activity, and body temperature regulation in the rat. Am. J. Physiol. 212: 1288.Google Scholar
  24. Hamilton, C. L. (1963) Interactions of food intake and temperature regulation in the rat. J. Comp. Physiol. 56: 476.Google Scholar
  25. Hjersen, D. L., S. R. Doctor, and R. L. Sheldon (1979) Shuttlebox side preference during pulsed microwave and conventional auditory cues. In: Electromagnetic Fields in Biological Systems, S. S. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 194–214.Google Scholar
  26. Hunt, E. L., N. W. King, and R D Phillips (1975) Behavioral effects of pulsed microwave radiation. Ann. N.Y. Acad. Sci. 247: 440.CrossRefGoogle Scholar
  27. Ivanov, K. P. (1975) Temperature signalization and its processing in an organism. In: Mechanisms of Information Processing in Sensory Systems. Izdatel’stvo Nauka, Leningrad, p. 7.Google Scholar
  28. Johnson, R. B., D. E. Myers, A. W. Guy, and R. H. Lovely (1977) Discriminative control of appetitive behavior by pulsed microwave radiation in rats. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 238–247.Google Scholar
  29. Justesen, D. R., and N. W. King (1970) Behavioral effects of low-level microwave irradiation in the closed space situation. In: Biological Effects and Health Implications of Microwave Radiation, S. F. Cleary (ed.). HEW Publ. BRH/DBE 70–2, p. 154.Google Scholar
  30. King, N. W. (1969) The Effects of Low Level Microwave Irradiation Upon Reflexive, Operant, and Discrimination Behaviors of the Rat. Dissertation, University of Kansas (University Microfilms, Inc., Ann Arbor, 69–21, 540 ).Google Scholar
  31. King, N. W., D. R. Justesen, and R. L. Clarke (1971) Behavioral sensitivity to microwave irradiation. Science 172: 398.CrossRefGoogle Scholar
  32. Korbel, S. F. (1970) Behavioral effects of low intensity UHF radiation. In: Biological Effects and Health Implications of Microwave Radiation, S. F. Cleary (ed.). HEW Publ. BRH/DBE 70–2, pp. 180–184.Google Scholar
  33. Lebovitz, R. M. (1973) Caloric vestibular stimulation via UHF-microwave irradiation. IEEE Trans. Biomed. Eng. 20: 119.CrossRefGoogle Scholar
  34. Lin, J. C., A. W. Guy, and L. T. Caldwell (1977) Thermographic and behavioral studies of rats in the near field of 918-MHz radiations. IEEE Trans. Microwave Theory Tech. MTT-25: 833.Google Scholar
  35. Lobanova, Y. A. (1960) Survival and development of animals at various intensities and duration of SHF action. Tr. Nii Gig. Prof. Tr. AMN SSR 1: 61.Google Scholar
  36. Lotz, W. G., and S. M. Michaelson (1978) Temperature and corticosterone relationship in microwave exposed rats. J. Appl. Physiol. 44: 438.Google Scholar
  37. Mitchell, D. S., W. G. Switzer, and E. L. Bronaugh (1977) Hyperactivity and disruption of operant behavior in rats after multiple exposures to microwave irradiation. Radio Sci. 12 (6S): 263.CrossRefGoogle Scholar
  38. Roberti, B., G. H. Heebels, J. C. M. Hendricx, A. H. A. M. de Greef, and O. L. Wolthuis (1975) Preliminary investigations of the effects of low-level microwave radiation on spontaneous motor activity in rats. Ann. N.Y. Acad. Sci. 247: 417.CrossRefGoogle Scholar
  39. Roberts, W. W., R. D. Mooney, and J. R. Martin (1974) Thermoregulatory behaviors of laboratory rodents. J. Comp. Physiol. Psycho!. 86: 693.CrossRefGoogle Scholar
  40. Sanza, J. N., and J. de Lorge (1977) Fixed interval behavior of rats exposed to microwaves at low power densities. Radio Sci. 12 (6S): 273.CrossRefGoogle Scholar
  41. Satinoff, E., and R. Hendersen (1977) Thermoregulatory behavior. In: Handbook of Operant Behavior, W. K. Honig and J. E. R. Staddon (eds.). Prentice—Hall, Englewood Cliffs, N.J., pp. 153–173.Google Scholar
  42. Servantie, B., G. Bertharion, R. Joly, A. M. Servantie, J. Etienne, P. Dreyfus, and P. Escoubet (1974) Pharmacologie effects of a pulsed microwave field. In: Biological Effects and Health Hazards of Microwave Radiation. P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 36–45.Google Scholar
  43. Stern, S. (1980) Behavioral effects of microwaves. Neurobehay. Toxicol. 2: 49.Google Scholar
  44. Stern, S., L. Margolin, B. Weiss, S. T. Lu, and S. M. Michaelson (1979) Microwaves: Effect on thermoregulatory behavior in rats. Science 206: 1198.CrossRefGoogle Scholar
  45. Stolwijk, J. A. J. (1977) Responses to the thermal environment. Fed. Proc. 36: 1655.Google Scholar
  46. Thomas, J. R., and G. Maitland (1979) Microwave radiation and dextroamphetamine: Evidence of combined effects on behavior of rats. Radio Sci. 14: 253.CrossRefGoogle Scholar
  47. Thomas, J. R., E. D. Finch, D. W. Fulk, and L. S. Burch (1975) Effects of low level microwave radiation on behavioral baselines. Ann. N.Y. Acad. Sci. 247: 425.CrossRefGoogle Scholar
  48. Thomas, J. R., S. S. Yeandle, and L. S. Burch (1977) Modification of internal discriminative control of behavior by low levels of pulsed microwave radiation. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 201–214.Google Scholar
  49. Thomas, J. R., L. S. Burch, and S. S. Yeandle (1979) Microwave radiation and chlordiazepoxide: Synergistic effects on fixed-interval behavior. Science 103: 1357.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations