Neural Effects of Microwave/Radiofrequency Energies

  • Sol M. Michaelson
  • James C. Lin
Chapter

Abstract

There has been a concerted effort to assess the sensitivity of the central nervous system (CNS) to “low levels’ of microwave energy. To date there is no convincing evidence of the existence of “low-intensity” microwave effects on the human CNS. Animal studies suggest that the mechanisms that are the basis for reported effects, involve microwave-induced nonuniform temperature distributions and/or thermal gradients (Cleary, 1977).

Keywords

Firing Rate Pulse Microwave Cholinesterase Activity Neural Effect Orient Reflex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey, W. R. (1977) Anatomy and biophysics of brain cells in weak ELF fields. In: Biologic Effects of Electric and Magnetic Fields Associated with Proposed Project Seafarer. National Academy of Sciences, Washington, D.C., pp. 389–399.Google Scholar
  2. Adey, W. R., and S. M. Bawin (eds.) (1977) Brain Interactions with Weak Electric and Magnetic Fields. Neurosci. Res. Program Bull. 15.Google Scholar
  3. Albert, E. N. (1977a) Light and electron microscopic observations on the blood brain barrier after microwave irradiation. In: Biological Effects and Measurement of Radiofrequency/Microwaves, D. G. Hazzard (ed.). HEW Publ. (FDA) 77–8026, pp. 294–309.Google Scholar
  4. Albert, E. N. (1977b) Reversibility of the blood brain barrier. URSI/USNC Int. Symp. Biol. Eff. Electromagnetic Waves, Airlie, Va. (abstract).Google Scholar
  5. Albert, E. N. (1978a) Ultrastructural pathology associated with microwave induced blood—brain barrier permeability. In: URSI International Symposium on Biological Effects of Electromagnetic Waves, Helsinki, p. 58.Google Scholar
  6. Albert, E. N. (1978b) Ultrastructural pathology associated with microwave induced alterations in blood—brain barrier permeability. In: Proc. Biol. Eff. E.M. Waves. XIX Gen. Assembly. Int. Union Radio Sci., Helsinki, p. 58.Google Scholar
  7. Albert, E. N. (1979) Reversibility of microwave induced blood—brain barrier permeability. Radio Sci. 14: 323.CrossRefGoogle Scholar
  8. Albert, E. N., and M. DeSantis (1975) Do microwaves alter nervous system-structure? Ann. N.Y. Acad. Sci. 247: 87.CrossRefGoogle Scholar
  9. Albert, E. N., and M. E. DeSantis (1977) Histological observations on central nervous system. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 299–310.Google Scholar
  10. Albert, E. N., and J. Kerns (1981) Reversible microwave effects on the blood—brain barrier. Brain Res. 230: 153.CrossRefGoogle Scholar
  11. Albert, E. N., F. J. Slaby, K. Patunraj, and D. Balzano (1980a) 147 MHz RF irradiation does not increase calcium release from chick brains. Bioelectromagnetics 1: 212A.Google Scholar
  12. Albert, E. N., C. F. Blackman, and F. Slaby (1980b) Calcium dependent secretory protein release and calcium efflux after VHF electromagnetic radiation of rat pancreatic tissue. In: Proc. URSI Symposium on Electromagnetic Waves and Biology, A. J. Berteaud (ed.). Paris, pp. 330–336.Google Scholar
  13. Albert, E. N., M. F. Sherif, N. J. Papadopoulos, F. J. Slaby, and J. Monahan (1980a) Effect of 100 MHz and 2.45 GHz on rat cerebellar Purkinje cells. Bioelectromagnetics 1: 206A.Google Scholar
  14. Arber, S. L. (1976) Effect of microwaves on resting potential of giant neurons of mollusk Helix pomatia. Elektron. Obrab. Mater. 6: 7S.Google Scholar
  15. Austin, G. N., and S. M. Horvath (1954) Production of convulsions in rats by high frequency electrical currents. Am. J. Phys. Med. 3: 141.Google Scholar
  16. Baldwin, M. S., S. A. Bach, and S. A. Lewis (1960) Effects of radio frequency energy on primate cerebral activity. Neurology 10: 178.CrossRefGoogle Scholar
  17. Baranski, S. (1972) Histological and histochemical effects of microwave irradiation on the central nervous system of rabbits and guinea pigs. Am. J. Phys. Med. 51: 182.Google Scholar
  18. Baranski, S., and P. Czerski (1976) Biological Effects of Microwaves. Dowden, Hutchinson & Ross, Stroudsburg, Pa.Google Scholar
  19. Baranski, S., and Z. Edelwejn (1967) Electroencephalographic and morphological investigations on the influence of microwaves on the central nervous system. Acta Physiol. Pol. 18: 423.Google Scholar
  20. Baranski, S., and Z. Edelwejn (1968) Studies on the combined effects of microwaves and some drugs on bioelectric activity of rabbit CNS. Acta Physiol. Pol. 19: 37.Google Scholar
  21. Baranski, S., and Z. Edelwejn (1975) Experimental morphologic and electroencephalographic studies of microwave effects on the nervous system. Ann. N.Y. Acad. Sci. 247: 109.CrossRefGoogle Scholar
  22. Baranski, S., L. Czekalinski, P. Czerski, and S. Haduch (1963) Experimental research on fatal effect of micrometric wave electromagnetic radiation. Rev. Med. Aeronaut. (Paris) 2: 108.Google Scholar
  23. Bawin, S. M., and W. R. Adey (1976) Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc. Natl. Acad. Sci. USA 73: 1999.Google Scholar
  24. Bawin, S. M., and W. R. Adey (1977) Calcium binding in cerebral tissues. In: Biological Effects and Measurement of Radiofrequency/Microwaves, D. G. Hazzard (ed.) HEW Publ. (FDA) 77–8026, PP. 305–313.Google Scholar
  25. Bawin, S. M., R. J. Gavalas-Medici, and W. R. Adey (1973) Effects of modulated very high frequency fields on specific brain rhythms in cats. Brain Res. 58: 365.CrossRefGoogle Scholar
  26. Bawin, S. M., L. K. Kaczmarek, and W. R. Adey (1975) Effects of modulated VHF fields on the central nervous system. Ann. N.Y. Acad. Sci. 247: 74.CrossRefGoogle Scholar
  27. Bawin, S. M., A. R. Sheppard, and W. R. Adey (1978) Possible mechanisms of weak electromagnetic field coupling in brain tissue. Bioelectrochem. Bioenerg. 5: 67.CrossRefGoogle Scholar
  28. Bilokrinitsky, V. S. (1966) Changes in the tigroid substance of neurons under the effect of radio waves. Fiziol. Zh. (Kiev) 12: 70.Google Scholar
  29. Bilokrinitsky, V. S., and Y. D. Dumansky (1974) Histochemical characteristics of brain enzymes with exposure to a low intensity SHF field. Presented at the 2nd Industrial and Environmental Neurology Congress, Prague.Google Scholar
  30. Blackman, C. F., J. A. Elder, C. M. Weil, S. G. Benane, D. C. Eichinger, and D. E. House (1979) Induction of calcium ion efflux from brain tissue by radiofrequency radiation: Effects of modulation frequency and field strength. Radio Sci. 14: 93.CrossRefGoogle Scholar
  31. Blackman, C. F., S. G. Benane, J. A. Edler, D. E. House, J. A. Lampe, and J. M. Faulk (1980) Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: Effect of sample number and modulation frequency on the power-density window. Bioelectromagnetics 1: 35.CrossRefGoogle Scholar
  32. Bondy, S. C., and J. L. Purdy (1974) Selective regulation of the blood—brain barrier by sensory input. Brain Res. 76: 542.CrossRefGoogle Scholar
  33. Brightman, M. W., I. Klatzo, Y. Olsson, and T. S. Reese (1970) The blood—brain barrier to protein under normal and pathological conditions. J. Neurol. Sci. 10: 215.CrossRefGoogle Scholar
  34. Bychkov, M. S. (1972) Neurophysiological characterization of the action mechanism of super-high frequency electromagnetic waves. In: Industrial Health and Biological Effects of Radio-Frequency Electromagnetic Waves. Materials of the Fourth All-Union Symposium, Moscow, p. 46.Google Scholar
  35. Bychkov, M. S., and I. S. Dronov (1974) Electroencephalographic data on the effects of very weak microwaves at the level of the midbrain reticular formation—hypothalamuscerebellar cortex level. (Translation in NTIS Rep. JPRS 63321.)Google Scholar
  36. Bychkov, M. S., V. Markov, and V. Rychkov (1974) Electroencephalographic changes under the influence of low intensity chronic microwave irradiation. (Translation in NTIS Rep. JPRS 63321.)Google Scholar
  37. Carpenter, D. O. (1967) Temperature effects on pacemaker generation, membrane potential, and critical firing threshold in Aplysia neurons. J. Gen. Physiol. 50: 1469.CrossRefGoogle Scholar
  38. Casterline, J. L., and C. H. Williams (1969) The effect of pesticide administration on serum and tissue esterases of rats fed diets of varying casein, calcium, and magnesium content. Toxicol Appl. Pharmacol. 15: 532.CrossRefGoogle Scholar
  39. Chamness, A. F., H. R. Scholes, S. W. Sexauer, and J. W. Frazer (1976) Metal ion content of specific areas of the rat brain after 1600 MHz radiofrequency irradiation. J. Microwave Power 11: 333.Google Scholar
  40. Chang, B. K., A. T. Huang, W. T. Joines, and R. S. Dramer (1978) The effect of microwave radiation (1.0 GHz) on the blood—brain barrier in dogs. Proc. Biol. Eff. E. M. Waves. X IX Gen. Assembly. Int. Union Radio Sci., Helsinki.Google Scholar
  41. Chizenkova, R. A. (1967) Brain biopotentials in the rabbit during exposure to electromagnetic fields. Fiziol. Zh. Akad. Nauk. UKR SSR (Moscow) 53: 514.Google Scholar
  42. Chizenkova, R. A. (1969) Background and induced activity of neurons of the optical cortex of a rabbit after the action of a SHF field. Zh. Vyssh. Nernv. Deyat. im. I. P. Pavlova 19: 495.Google Scholar
  43. Chou, C. A. (1975) The Effects of Electromagnetic Fields on the Nervous System. Ph.D. dissertation, University of Washington, Seattle.Google Scholar
  44. Clawson, C. C., J. F. Hartmann, and R. L. Vernier (1966) Electron microscopy of the effect of gram-negative endotoxin on the blood—brain barrier. J. Comp. Neurol. 127: 183.CrossRefGoogle Scholar
  45. Cleary, S. F. (1977) Biological effects of microwaves and radiofrequency radiation. In: CRC Critical Reviews in Environmental Control, Vol. 7, C. Straub (ed.). Chemical Rubber Co., Cleveland, pp. 121–165.Google Scholar
  46. Cohen, M. E., and P. D. White (1972) Neurocirculatory asthenia. Mil. Med. 137: 142.Google Scholar
  47. Cole, K. S. (1968) Membrane capacity. In: Ions, Impulses, and Membranes, C. A. Tobias (ed.). University of California Press, Berkeley, p. 12.Google Scholar
  48. Cornish, H. H. 1971 Problems posed by observations on serum enzyme change in toxicology. In: CRC Critical Reviews in Toxicology, Chemical Rubber Company, Cleveland, p. 81.Google Scholar
  49. Crone, C. (1963) The permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol. Scand. 58: 292.CrossRefGoogle Scholar
  50. Crone, C. (1965) The permeability of brain capillaries to non-electrolytes. Acta Physiol. Scand. 64: 407.CrossRefGoogle Scholar
  51. Czerski, P. (1975) Experimental models for the evaluation of microwave biological effects. Proc. IEEE 63: 1540.CrossRefGoogle Scholar
  52. de Seguin, L., and G. Castelain (1947) Action of ultrahigh frequency radiation (wavelength 21 cm) on temperature of small laboratory animals. C. R. Acad. Sci. 224: 1662.Google Scholar
  53. Dodge, C., and S. Kassel (1966) Soviet Research on the Neural Effects of Microwaves. ATD Report 66–133, Library of Congress, Washington, D.C.Google Scholar
  54. Dolina, L. A. (1961) Morphological changes in the central nervous system due to the action of centimeter waves on the organism. Arkh. Patol. 23: 51.Google Scholar
  55. Drogichina, E. A., M. N. Sadchikova, M. N. Snegova, G. V. Konchalovskaya, and K. T. Glotova (1966) Autonomic and cardiovascular disorders during chronic exposure to superhigh frequency electromagnetic fields. Gig. Tr. Prof. Zabol. 10: 13.Google Scholar
  56. Dumansky, Y. D., and M. G. Shandala (1974) The biological action and hygienic significance of electromagnetic fields of superhigh and ultrahigh frequencies in densely populated areas. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldesjog (eds.). Polish Medical Publishers, Warsaw, pp. 289–293.Google Scholar
  57. D’Yachenko, N. A. (1970a) Changes in thyroid function with chronic exposure to microwave radiation. Gig. Tr. Prof. Zabol. 14: 51.Google Scholar
  58. D’Yachenko, N. A. (1970b) Impact of SHF electromagnetic radiation on the functional state of the myocardium. Voen. Med. Zh. 2: 35.Google Scholar
  59. Edelwejn, Z. (1968) Attempted evaluation of the functional state of brain synapses in rabbits exposed chronically to the action of microwaves. Acta Physiol. Pol. 19: 791.Google Scholar
  60. Edelwejn, Z., and S. Haduch (1962) Electroencephalographic studies on persons exposed to microwave. Acta Physiol. Pol. 13: 431.Google Scholar
  61. Ekel, G. J. (1974) Use of conditioned reflex methods in Soviet behavioral toxicology research. In: Behavior Toxicology, C. Xintaras, B. L. Johnson, and I. de Groat (eds.). HEW Publ. (NIOSH) 140, pp. 74–126.Google Scholar
  62. Frey, A. H., S. R. Feld, and B. Frey (1975) Neural function and behavior: Defining the relationship. Ann. N.Y. Acad. Sci. 247: 433.CrossRefGoogle Scholar
  63. Fröhlich, H. (1977) Possibilities of long-and short-range electric interactions of biological systems. Neurosci. Res. Program Bull. 15: 67.Google Scholar
  64. Fukalova, P. P. (1964) The sensitivity of olfactory and optic analyzers in persons exposed to the effect of constantly-generated SW and USW. Tr. Nii Gig. Tr. Prof. AMN SSR (Moscow) 2: 144.Google Scholar
  65. Gillard, J., B. Servantie, G. Bertharion, A. M. Servantie, and J. K. C. Obrenovitch (1976) Study of the microwave-induced perturbations of the behavior by the open-field test in the white rat. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, p. 693.Google Scholar
  66. Ginzburg, D. A., and M. N. Sadchikova (1964) Changes in the electroencephalogram under the continuous action of radiowaves. Tr. Gig. Prof. AMN SSSR (Moscow) 2: 126.Google Scholar
  67. Goldstein, L., and Z. Sisko (1974) A quantitative electroencephalographic study of the acute effects of X-band microwaves in rabbits. In: Biological Effects and Health Hazards of Microwave Radiation. P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 128–133.Google Scholar
  68. Goncharova, N. N., V. B. Karamyshev, and N. V. Maksimenko (1966) Occupational hygiene problems in working with ultrashort-wave transmitters used in TV and radio broadcasting. Gig. Tr. Prof. Zabol. 10: 10.Google Scholar
  69. Gordon, Z. V. (1958) Questions on work hygiene related to the effect of a SHF-field. Zh. Gig. Tr. Prof. Zabol. 6: 14.Google Scholar
  70. Gordon, Z. V. (1960) The problem of the biological action of UHF. Tr. Nil Gig. Tr. Prof. USSR 1: 65.Google Scholar
  71. Gordon, Z. V. (1964) Problems of industrial hygiene and the biological action of various ranges of radio-waves. Herald Acad. Med. Nauk 19:42 (JPRS 27032 ).Google Scholar
  72. Gordon, Z. V. (1966) Biological Effect of Microwaves in Occupational Hygiene. Izd. Med., Leningrad (TT 70–50087, NASA TT F-633, 1970 ).Google Scholar
  73. Gordon, Z. V. (1970a) Occupational health aspects of radio-frequency electromagnetic radiation. In: Ergonomics and Physical Environmental Factors. Occupational Safety and Health Series, No. 21, International Labour Office, Geneva, p. 159.Google Scholar
  74. Gordon, Z. V. (1970b) Biological Effects of Microwaves in Occupational Hygiene. Israel Program for Scientific Translations, Jerusalem, pp. 56–66.Google Scholar
  75. Gordon, Z. V., Y. A. Lobanova, and M. S. Tolgskaya (1955) Some data on the effect of centimeter waves (experimental studies). Gig. Sanit. 12: 16.Google Scholar
  76. Grinbarg, A. G. (1959) VHF—HF therapy in certain affections of the peripheral nervous system. Kazan. Med. Zh. USSR 40: 59.Google Scholar
  77. Grodsky, I. T. (1975) Possible physical substrates for the interaction of electromagnetic fields with biologic membranes. Ann. N.Y. Acad. Sci. 247: 117.CrossRefGoogle Scholar
  78. Gruneau, S. P., K. J. Oscar, M. T. Falker, and S. I. Rapaport (1982) Absence of microwave effect on blood—brain barrier permeability to [14C]sucrose in the conscious rat. Exp. Neurol. 75: 299.CrossRefGoogle Scholar
  79. Gunn, S. A., T. C. Gould, and W. A. D. Anderson (1961) The effect of microwave radiation on morphology and function of rat testis. Lab. Invest. 10: 301.Google Scholar
  80. Gvozdikova, Z. M., V. M. Anan’yev, I. N. Zenina, and V. I. Zak (1964) Sensitivity of the rabbit central nervous system to a continuous (non-pulsed) ultrahigh frequency electromagnetic field. Byull. Eksp. Biol. Med. 58: 63.CrossRefGoogle Scholar
  81. Hardy, J. D. (1973) Posterior hypothalamus and the regulation of body temperature. Fed. Proc. 32: 1564.Google Scholar
  82. Johnson, C. C., and A. W. Guy (1972) Non-ionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE 60: 692.CrossRefGoogle Scholar
  83. Karamyshev, V. B. (1966) Physiological—hygienic characteristics of the working conditions of television and radio station personnel. In: Questions of Work Hygiene and Occupational Pathology in the Chemical and Mechanical Engineering Industries. Reports of the Scientific Session of the Institute, Ukr. Gos. Inst. Patol. Gig. Tr., Kharkov, p. 106.Google Scholar
  84. Kevork’yan, A. A. (1948) Working with ultrahigh frequency impulse generators from the standpoint of labor hygiene. Gig. Sanit. 4: 26.Google Scholar
  85. Kholodov, Y. A. (1963) Changes in the electrical activity of the rabbit cerebral cortex during exposure to a UHF—HF electromagnetic field. Part 2. The direct action of the UHF—HF field on the central nervous system. Byull. Eksp. Biol. Med. 56: 42.CrossRefGoogle Scholar
  86. Kholodov, Y. A. (1964) The influence of a VHF—HF electromagnetic field on the electrical activity of an isolated strip of cerebral cortex. Byull. Eksp. Biol. Med. 57: 98.CrossRefGoogle Scholar
  87. Kholodov, Y. A. (1966) The Effect of Electromagnetic and Magnetic Fields on the Central Nervous System. Nauka, Moscow, p. 283 (NASA TT-F-465).Google Scholar
  88. Kitsovskaya, I. A. (1960) An investigation of the interrelationships between the main nervous processes in rats on exposure to SHF fields of various intensities. Tr. Nii Gig. Tr. Prof. AMN SSSR 1: 75.Google Scholar
  89. Kitsovskaya, I. A. (1968a) The effect of radiowaves of various ranges on the nervous system (sound stimulation method). In: On the Biological Effect of Radiofrequency Electromagnetic Fields. Moscow, p. 81.Google Scholar
  90. Kitsovskaya, I. A. (1968b) The influence of low-intensity microwaves on indices characterizing the state of cholinergic processes. In: Work Hygiene and the Biological Effect of Radiofrequency Electromagnetic Waves. Moscow, p. 71.Google Scholar
  91. Klimkova-Deutschova, E. (1974) Neurologic findings in persons exposed to microwaves. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, p. 268.Google Scholar
  92. Kolesnik, F. A., and V. M. Malyshev (1967) The problem of clinical observation of injuries caused by SHF electromagnetic fields. Voen. Med. Zh. 4: 21.Google Scholar
  93. Letavet, A. A., and Z. V. Gordon (eds.) (1960) The Biological Action of Ultrahigh Frequencies. Inst. Labor Hygiene and Occupational Diseases, Acad. Med. Sci., Moscow (JPRS 12471, 1962 ).Google Scholar
  94. Lin, J. C., and M. F. Lin (1980) Studies on microwave and blood—brain barrier interaction. Bioelectromagnetics 1: 313.CrossRefGoogle Scholar
  95. Livanov, M. N., A. B. Tsypin, Y. G. Grigoriev, U. G. Kruschev, S. M. Stepanov, and A. M. Anen’yev (1960) The effect of electromagnetic fields on the bioelectric activity of cerebral cortex in rabbits. Byull. Eksp. Biol. Med. 49: 63.CrossRefGoogle Scholar
  96. Lobanova, Y. A., and A. V. Goncharova (1971) Investigation of conditioned-reflex activity in animals (albino rats) subjected to the effect of ultrashort and short radio-waves. Gig. Tr. Prof. Zabol. 15: 29.Google Scholar
  97. Lobanova, Y. A. and Z. V. Gordon (1960) The study of olfactory sensitivity in persons exposed to SHF. Tr. Nii Gig. Prof. AMN SSR 1: 52.Google Scholar
  98. Lorenzo, A. V., I. Shirahige, M. Liang, and C. F. Barlow (1972) Temporary alteration of cerebrovascular permeability to plasma protein during drug induced seizures. Am. J. Physiol. 223: 268.Google Scholar
  99. McAfee, R. D. (1961) Neurophysiological effect of 3 cm microwave radiation. Am. J. Physiol. 200: 192.Google Scholar
  100. McAfee, R. D. (1963) Physiological effects of thermode and microwave stimulation of peripheral nerves. Am. J. Physiol. 203: 374.Google Scholar
  101. McKee, A., C. H. Dorsey, D. L. Eisenbrandt, and N. E. Woden (1980) Ultrastructural observations of microwave-induced morphologic changes in the central nervous system of hamsters. Bioelectromagnetics 1: 206.Google Scholar
  102. Marha, K. (1963) Biological effects of RF electromagnetic waves. Prac. Lek. 15: 387.Google Scholar
  103. Marha, K., J. Musil, and H. Tuha (1968) Electromagnetic Fields and the Living Environment. State Health Publishing House, Prague (Transi. SBN 911302–13–7, San Francisco Press, 1971 ).Google Scholar
  104. Merritt, J. H., R. H. Hartzell, and J. W. Frazer (1975) The effect of 1.6 GHz on neurotransmitters in discrete areas of the brain. SAM-TR-76–3, USAF School of Aerospace Medicine, Aerospace Medical Division, pp. 1–11.Google Scholar
  105. Merritt, J. H., A. F. Chamness, R. H. Hartzell, and S. J. Allen (1977) Orientation effects on microwave-induced hyperthermia and neurochemical correlates. J. Microwave Power 12: 167.Google Scholar
  106. Merritt, J. H., A. F. Chamness, and S. J. Allen (1978) Studies in blood—brain barrier permeability after microwave-radiation. Radiat. Environ. Biophys. 15: 367.CrossRefGoogle Scholar
  107. Minecki, L., and R. Bilski (1961) Histopathological changes in internal organs of mice exposed to the action of microwaves. Med. Pr. 12: 337.Google Scholar
  108. Mishchenko, L. I. (1968) The effect of a UHF electromagnetic field on acetylcholine exchange in the brain of rats. In: Material of the Ukrainian Republic Conference of Industrial-Health Inspectors and Scientists. Session of the Kharkov Institute of Work Hygiene and Occupational Diseases, Kiev, p. 135.Google Scholar
  109. Mishchenko, L. I. (1969) The effect of an ultrahigh frequency electromagnetic field on carbohydrate exchange in the brain of rats. Byull. Eksp. Biol. Med. 68: 56.CrossRefGoogle Scholar
  110. Muratov, V. I., and A. P. Turaeva (1972) Changes in the cardiovascular system under the chronic influence of an SHF field. Voen. Med. Zh. 1: 22.Google Scholar
  111. Myers, R.D., and D. H. Ross (1981) Radiation and brain calcium: A review and critique. Neurosci. Biobehay. Rev. 5: 503.CrossRefGoogle Scholar
  112. Nair, V., and L. J. Roth (1964) Effect of x-irradiation and certain other treatments on blood—brain barrier permeability. Radiat. Res. 23: 249.CrossRefGoogle Scholar
  113. Nikogosyan, S. V. (1960) Effect of SHF on cholinesterase activity in blood serum and organs in animals. In: The Biological Action of Ultrahigh Frequencies, A. A. Letavet and Z. V. Gordon (eds.). Acad. Med. Sci., Moscow, p. 81 (JPRS 12471).Google Scholar
  114. Nikogosyan, S. V. (1964) A study of the activity of cholinesterase in blood serum and in organs of animals under the chronic influence of microwaves, p. 43; The effect of 10-cm waves on the amount of nucleic acids in the organs of animals, p. 66. In: The Biological Effect of Radiofrequency Electromagnetic Fields. Works of the Laboratory of Radiofrequency Electromagnetic Fields, Institute of Work Hygiene and Occupational Diseases, AMN SSR, Moscow.Google Scholar
  115. Nikogosyan, S. V. (1971) Functional condition of certain analyzers in persons subjected to the influence of radiowaves. Gig. Truda. Prof. Zabol. 7: 49.Google Scholar
  116. Nikogosyan, S. V., and I. A. Kitsovskaya 1968 The altered activity of cholinesterase in the CNS of animals in various functional states under the influence of low intensity decimeter waves. Gig. Tr. Prof. Zabol. 5: 5.Google Scholar
  117. Novitskii, Y. I., Z. V. Gordon, A. S. Presman, and Y. A. Kholodov (1971) Radio Frequencies and Microwaves, Magnetic and Electrical Fields (NASA TT F-14.021)Google Scholar
  118. Oldendorf, W. H. (1949) Focal neurological lesions produced by microwave irradiation. Proc. Soc. Exp. Biol. Med. 72: 432.Google Scholar
  119. Oldendorf, W. H. (1970) Measurement of brain uptake of radio-labeled substances using a tritiated water internal standard. Brain Res. 24: 372.CrossRefGoogle Scholar
  120. Oldendorf, W. H. (1971) Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol. 221: 1629.Google Scholar
  121. Oldendorf, W. H. (1974) Blood—brain barrier permeability to drugs. Annu. Rev. Pharmacol. 14: 239.CrossRefGoogle Scholar
  122. Olsson, Y., and T. S. Reese (1969) Inaccessibility of the endoneurium of sciatic nerve to exogenous proteins. Anat. Rec. 163: 319.Google Scholar
  123. Oscar, K. J. (1980) Interaction of Electromagnetic Energy with Absorptive Material by Thermally Inducing Elastic Stress Waves. Ph.D. thesis, American University, Washington, D.C.Google Scholar
  124. Oscar, K. J., S. P. Gruneau, M. T. Folker, and S. I. Rapoport (1981) Local cerebral blood flow after microwave exposure. Brain Res. 204: 220.CrossRefGoogle Scholar
  125. Oscar, K. J., and T. D. Hawkins (1977) Microwave alteration of the blood—brain barrier system of rats. Brain Res. 126: 281.CrossRefGoogle Scholar
  126. Osipov, Y. A. (1965) Occupational Hygiene and the Effects of Radio-Frequency Electromagnetic Fields on Workers. Meditsina Press, Leningrad, pp. 78–103.Google Scholar
  127. Paulsson, L. E., Y Hamnerius, and W. G. McLean (1977) The effects of microwave radiation on microtubules and axonal transport. Radiat Res. 70: 212.CrossRefGoogle Scholar
  128. Pavlov, I.P. (1927) Conditioned Reflexes. Oxford University Press, London.Google Scholar
  129. Pazderova, J. (1968) Effects of electromagnetic radiation of the order of centimeter and meter wavelength on human’s health. Prac. Lek. 20: 447.Google Scholar
  130. Pazderova-Vejlupkova, J. (1981) Update on epidemiology: Europe. Presented at the XXth Assembly of URSI, Washington, D.C.Google Scholar
  131. Petrov, I. R. (ed.) (1970) Influence of Microwave Radiation on the Organism of Man and Animals. Meditsina Press, Leningrad (NASA TT F-708, 1971 ).Google Scholar
  132. Pickard, W. F., Y. H. Barsoum, and F. J. Rosenbaum (1980) Is the Characean plasmalemma a radiofrequency rectifier? Presented at the 2nd Annual Meeting of the Bioelectromagnetics Society, San Antonio.Google Scholar
  133. Pinneo, L. R., R. Baus, R. D. McAfee, and J. D. Fleming (1962) The Neural Effects of Microwaves. RADC-TDR 62–231. Tulane University, New Orleans, p. 24.Google Scholar
  134. Portela, A., O. Llobera, S. M. Michaelson, P. A. Stewart, J. C. Perez, A. H. Guerrero, C. A. Rodriguez, and R. J. Perez (1975) Transient effects of low-level microwave irradiation on bioelectric muscle cell properties and on water permeability and its distribution. In: Fundamental and Applied Aspects of Nonionizing Radiation, S. M. Michaelson, M. W. Miller, R. Magin, and E. L. Carstensen (eds.). Plenum Press, New York, pp. 93–127.CrossRefGoogle Scholar
  135. Presman, A. S. (1965) The effect of microwaves on living organisms and biological structures. Usp. Fiz. Nauk. 86: 263.Google Scholar
  136. Presman, A. S. (1968) Electromagnetic Fields and Life. Izd-vo Nauka, Moscow (Transi. Plenum Press, 1970 ).Google Scholar
  137. Preston, E., and G. Prefontaine (1980) Cerebrovascular permeability to sucrose in the rat exposed to 2450 MHz microwaves. J. Appl. Physiol. 49: 218.Google Scholar
  138. Preston, E., E. J. Vavasour, and H. M. Assenheim (1978) Effect of 2450 MHz microwave irradiation on permeability of the blood—brain barrier to mannitol in the rat. In: Symposium on Electromagnetic Fields in Biological Systems. IMPI, Ottawa, Canada, p. 5 (abstract).Google Scholar
  139. Preston, E., E. J. Vavasour, and H. M. Assenheim (1979) Permeability of the blood—brain barrier to mannitol in the rat following 2450 MHz microwave irradiation. Brain Res. 174: 109.CrossRefGoogle Scholar
  140. Raichle, M. E., J. O. Eichling, and R. L. Grubb (1974) Brain permeability of water. Arch. Neurol. 30: 319.CrossRefGoogle Scholar
  141. Raichle, M. E., J. O. Eichung, M. G. Straatmann, M. J. Welch, K. B. Larson, and M. M. Ter-Pegossian (1976) Blood—brain barrier permeability of 14C-labeled alcohols and 150-labeled water. Am. J. Physiol. 230: 543.Google Scholar
  142. Rapoport, S. I., K. Ohno, W. R. Fredericks, and K. D. Pettigrew (1978) Regional cerebrovascular permeability to 14C sucrose after osmotic opening of the blood—brain barrier. Brain Res. 150: 653.CrossRefGoogle Scholar
  143. Reese, T. S., and M. J. Kamovsky (1967) Fine structural localization of a blood—brain barrier to exogenous peroxidase. J. Cell Biol. 34: 207.CrossRefGoogle Scholar
  144. Rene, A. A., J. L. Parker, J. H. Darden, and N. A. Eaton (1973) Effect of a supralethal dose of radiation on the blood—brain barrier. AFFRI Sci., Report SR73–2, AD762 411.Google Scholar
  145. Rinder, L., and U. Olsson (1968) Vascular permeability changes in experimental brain concussion, part I and part II. Acta Neuropathol. 11: 183.Google Scholar
  146. Rodzilsky, B., and J. Olszewsky (1957) Permeability of cerebral blood vessels studied by radioactive iodinated bovine albumin. Neurology 7: 279.Google Scholar
  147. Rogussky, S. S., L. A. Ulitsky, B. N. Bartsevich, A. V. Il’yin, and V. I. Krivenko (1970) Results of dynamic observation of persons working in an environment influenced by an SHF field. Voen. Med. Zh. 6: 39.Google Scholar
  148. Rupp, T., J. Montet, and J. W. Frazer 1975 A comparison of thermal and radio-frequency exposure effects on trace metal content of blood plasma and liver cell fractions of rodents. Ann. N.Y. Acad. Sci. 247: 282.CrossRefGoogle Scholar
  149. Sabbot, I., and A. Costin (1974) Effect of stress on the uptake of radiolabeled calcium in the pituitary gland and the brain of the rat. J. Neurochem. 22: 731.CrossRefGoogle Scholar
  150. Sadchikova, M. N. (1962) State of the nervous system under the influence of UHF. In: The Biological Action of Ultrahigh Frequencies, A. A. Letavet and Z. V. Gordon (eds.). Acad. Med. Sci. Moscow, p. 25.Google Scholar
  151. Sadchikova, M. N., and K. V. Nikonova (1971) Comparative evaluation of the state of health of persons working under conditions involving exposure to microwaves of different intensity. Tr. Nii Gig. Tr. Prof. Zabol. 15 (9): 10.Google Scholar
  152. Sadchikova, M. N., and A. A. Orlova (1958) Clinical picture of the chronic effects of electromagnetic microwaves. Ind. Hyg. Occup. Dis. 2: 16.Google Scholar
  153. Schmidt, M. J., D. E. Schmidt, and G. A. Robison (1971) Cyclic adenosine monophosphate in brain areas: Microwave irradiation as a means of tissue fixation. Science 173: 1142.CrossRefGoogle Scholar
  154. Schwan, H. P. (1957) Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5: 147.Google Scholar
  155. Schwan, H.P. (1971) Interaction of microwave and radiofrequency radiation with biological systems. IEEE Trans. Microwave Theory Tech. MIT, 19: 146.CrossRefGoogle Scholar
  156. Schwan, H. P. (1977) Electrical membrane potentials, tissue excitation, and various relevant interpretations. In: Biologic Effects of Electric and Magnetic Fields Associated with Proposed Project Seafarer. National Academy of Sciences, Washington, D.C., pp. 401–411.Google Scholar
  157. Schwarz, G. (1962) A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solutions. J. Phys. Chem. 66: 2636.CrossRefGoogle Scholar
  158. Seaman, R. L., and H. Wachtel (1978) Slow and rapid responses to CW and pulsed microwave radiation by individual Aplysia pacemakers. J. Microwave Power 13: 77.Google Scholar
  159. Sercl, M., D. Jechova, M. Komrska, J. Kovarik, V. Kyral, H. Licha, J. Licky, S. Nettl, D. Simkiva, J. Slovicek, L. Urcha, L. Zdrahal, M. Tusl, S. Svorcova, and V. Kamt (1961) On the effects of cm electromagnetic waves on the nervous system of man: radar. Sb. Ved. Pr. Lek. Fak. Karlovy Univ. Hradci Kralove 4: 427.Google Scholar
  160. Serdiuk, A. M. (1969) Biological effect of low-intensity ultrahigh frequency fields. Vrach. Delo 11: 108.Google Scholar
  161. Servantie, B., G. Bertharion, R. Joly, A. M. Servantie, J. Etienne, P. Dreyfus, and P. Escoubet (1974) Pharmacologic effects of a pulsed microwave field. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.) Polish Medical Publishers, Warsaw, pp. 36–45.Google Scholar
  162. Servantie, B., A. M. Servantie, and J. Etienne (1975) Synchronization of cortical neurons by a pulsed microwave field as evidenced by spectral analysis of EEG from the white rat. Ann N.Y. Acad. Sci. 247: 82.CrossRefGoogle Scholar
  163. Shelton, W. W., and J. H. Merritt (1979) In vitro study of microwave effects on calcium efflux in rat brain tissue. URSI Abstracts, p. 338.Google Scholar
  164. Shelton, W. W., and J. H. Merritt (1980) Efflux of 45Ca2+ from rat cortex tissue under microwave radiation. Bioelectromagnetics 1: 250A.Google Scholar
  165. Sheyvekhman, B. Y. (1949) Effect of the action of a VHF—HF field on the aural sensitivity during application of electrodes in the zone of projection of the aural zone of the cortex (lamella of temporal bone). Probi. Fiziol. Akust. 1: 122.Google Scholar
  166. Snyder, S. H. (1970) The effects of microwave irradiation on the turnover rate of serotonin and norepinephrine in rat brain. Annual Summary Report, Department of Pharmacology, Johns Hopkins University, p. 15.Google Scholar
  167. Spackman, D. H., and V. Riley (1978) Studies of RF radiation effects on blood—brain barrier permeability using fluorescein and amino acids. Proc. Biol. Eff. E.M. Waves. X IX Gen. Assembly. Int. Union Radio Sci., Helsinki.Google Scholar
  168. Stavinoha, W. B., B. Pepelko, and P. W. Smith (1970) Microwave radiation to inactivate cholinesterase in rat brain prior to analysis for acetylcholine. Pharmacologist 12: 257.Google Scholar
  169. Stavinoha, W. B., M. A. Medina, J. Frazer, S. T. Weintraub, D. H. Ross, A. T. Modak, and D. J. Jones (1976) The effects of 19 megacycle irradiation on mice and rats. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 431–448.Google Scholar
  170. Stverak, I., K. Marha, and G. Pafkova (1974) Some effects of various pulsed fields on animals with audiogenic epilepsy. In: Biological Effects of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 141–144.Google Scholar
  171. Sutton, C. H., and F. B. Carroll (1979) Effect of microwave induced hyperthermia on the blood—brain barrier of the rat. Radio Sci. 14: 329.CrossRefGoogle Scholar
  172. Sutton, C. H., R. L. Nunnally, and F. B. Carroll (1973) Protection of the microwave-irradiated brain with body-core hypothermia. Cryobiology 10: 513.Google Scholar
  173. Switzer, W. G., and D. S. Mitchell (1977) Long term effects of 2.45 GHz radiation on the ultrastructure of the cerebral cortex and on hematologic profiles of rats. Radio Sci. 12: 287.CrossRefGoogle Scholar
  174. Takashima, S., B. Onaral, and H. Schwan (1979) Effects of modulated RF energy on the EEG of mammalian brains. Radial Environ. Biophys. 16: 15.CrossRefGoogle Scholar
  175. Taylor, E. M., and B. T. Ashleman (1974) Analysis of central nervous system involvement in the microwave auditory effect. Brain Res. 74: 201.CrossRefGoogle Scholar
  176. Thomas, J., L. Burch, and S. Yeandle (1979) Microwave radiation and chlordiazepoxide: Synergistic effects on fixed-interval behavior. Science 203: 1357.CrossRefGoogle Scholar
  177. Thompson, W. D., and A. E. Bourgeois (1965) Effects of Microwave Exposure on Behavior and Related Phenomena. Primate Behavior Lab., Aeromed. Res. Lab. Rep. Wright—Patterson AFB, Ohio (ARL-TR-65–20; AD 489245 ).Google Scholar
  178. Tolgskaya, M. S. (1959) Morphological changes in animals exposed to 10 cm microwaves. Vop. Kurortol. Fizioter. Lech. Fiz. Kul’t. 1: 21.Google Scholar
  179. Tolgskaya, M. S., and Z. V. Gordon (1960) Changes in the receptor and interoreceptor apparatuses under the influence of UHF. In: The Biological Action of Ultrahigh Frequencies, A. A. Letavet and Z. V. Gordon (eds.). Acad. Med. Sci., Moscow, p. 104.Google Scholar
  180. Tolgskaya, M. S., and Z. V. Gordon (1964) Comparative morphological characterization of the effects of microwaves of various wavelengths. Tr. Nii Gig. Tr. Prof. AMN SSR 2: 80.Google Scholar
  181. Tolgskaya, M. S., and Z. V. Gordon (1973) Pathological Effects of Radio Waves. Meditsina Press, Moscow (Trans. Consultants Bureau, Plenum Press, 1973 ).Google Scholar
  182. Tolgskaya, M. S., Z. V. Gordon, and Y. A. Lobanova (1960) Morphological changes in experimental animals under the influence of pulsed and continuous wave SHF—UHF radiation. Tr. Nii Gig. Tr. Prof. AMN SSR 1: 90.Google Scholar
  183. Tomashevskaya, L. A., and Y. M. Makarenko (1967) The effect of a shortwave-electric field on certain biochemical processes in the organism. In: Hygiene of Populated Areas, Kiev, p. 38.Google Scholar
  184. Tyagin, N. V. (1971) Clinical Aspects of Irradiation in the SHF Range. Meditsina Press, Leningrad.Google Scholar
  185. Tyazhelov, V. V., R. E. Tigranian, and E. P. Khizhniak (1977) New artifact-free electrodes for recording of biological potentials in strong electromagnetic fields. Radio Sci. 12 (6S): 121.CrossRefGoogle Scholar
  186. Veninga, T. S. (1971) The significance of biogenic amines as radio-indicators in experimental animals with reference to man. In: Biochemical Indicators of Radiation Injury in Man. International Atomic Energy Agency, Vienna, p. 125.Google Scholar
  187. Wachtel, H., R. Seaman, and W. Joines (1975) Effects of low intensity microwaves on isolated neurons. Ann. N.Y. Acad. Sci. 247: 46.CrossRefGoogle Scholar
  188. Ward, T. R., J. A. Elder, M. D. Jong, and D. Svendsgaard (1982) Measurement of blood—brain barrier permeation in rats during exposure to 245° MHz microwaves. Bioelectromagnetics 3: 371.CrossRefGoogle Scholar
  189. Williams, W. M., W. Hoss, M. Formanick, and S. M. Michaelson (1984a) Effects of 2450-MHz microwave energy on the blood—brain barrier to hydrophobic molecules. A. Effect on the permeability to sodium fluoride. Brain Res. Rev. 7: 165–170.CrossRefGoogle Scholar
  190. Williams, W. M., M. Del Cerro and S. M. Michaelson (1984b) Effects of 2450-MHz microwave energy on the blood—brain barrier to hydrophobic molecules. B. Effect on the permeability to HRP. Brain Res. Rev. 7: 171–181.CrossRefGoogle Scholar
  191. Williams, W. M., J. Platner, and S. M. Michaelson (1984c) Effects of 2450-MHz microwave energy on the blood—brain barrier to hydrophobic molecules. C. Effect on the permeability to [14C]. Brain Res. Rev. 7: 183–190.CrossRefGoogle Scholar
  192. Williams, W. M., S-T. Lu, M. Del Cerro, and S. M. Michaelson (1984d) Effects of 2450-MHz microwave energy on the blood—brain barrier to hydrophobic molecules. D. Brain temperature and blood—brain barrier permeability to hydrophilic tracers. Brain Res. Rev. 7: 192–212.Google Scholar
  193. Williams, W. M., S-T. Lu, M. Del Cerro, W. Hoss, and S. M. Michaelson (1984e) Effects of 2450-MHz microwave energy on the blood—brain barrier: An overview and critique of past and present research. IEEE Trans. Microwave Theory and Techniques 32: 808–818.CrossRefGoogle Scholar
  194. Willis, J. A., S. T. Gaubatz, and D. O. Carpenter (1974) The role of the electrogenic sodium pump in modulation of pacemaker discharge of Aplysia neurons. J. Cell. Physiol. 84: 463.CrossRefGoogle Scholar
  195. Yakovleva, M. I., T. P. Shlyafer, and I. P. Tsvetkova (1968) On the question of conditioned cardiac reflexes and the functional and morphological status of cortical neurons under the action of SHF—UHF electromagnetic fields. Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova 18: 973.Google Scholar
  196. Yamaura, I., and S. Chichibu (1967) Super-high frequency electric field and crustacean ganglionic discharges. Tohoku J. Exp. Med. 93: 249.CrossRefGoogle Scholar
  197. Yermakov, Y. V. (1969) On the mechanism of developing astheno-vegetative disturbance under the chronic effect of a SHF-field. Voen. Med. Zh. 3: 42.Google Scholar
  198. Zeman, G. H., R. L. Chaput, Z. R. Glazer, and L. C. Gershman (1973) Gammaaminobutyric acid metabolism in rats following microwave exposure. J. Microwave Power 8: 213.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations