Skip to main content

Abstract

There has been a concerted effort to assess the sensitivity of the central nervous system (CNS) to “low levels’ of microwave energy. To date there is no convincing evidence of the existence of “low-intensity” microwave effects on the human CNS. Animal studies suggest that the mechanisms that are the basis for reported effects, involve microwave-induced nonuniform temperature distributions and/or thermal gradients (Cleary, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey, W. R. (1977) Anatomy and biophysics of brain cells in weak ELF fields. In: Biologic Effects of Electric and Magnetic Fields Associated with Proposed Project Seafarer. National Academy of Sciences, Washington, D.C., pp. 389–399.

    Google Scholar 

  • Adey, W. R., and S. M. Bawin (eds.) (1977) Brain Interactions with Weak Electric and Magnetic Fields. Neurosci. Res. Program Bull. 15.

    Google Scholar 

  • Albert, E. N. (1977a) Light and electron microscopic observations on the blood brain barrier after microwave irradiation. In: Biological Effects and Measurement of Radiofrequency/Microwaves, D. G. Hazzard (ed.). HEW Publ. (FDA) 77–8026, pp. 294–309.

    Google Scholar 

  • Albert, E. N. (1977b) Reversibility of the blood brain barrier. URSI/USNC Int. Symp. Biol. Eff. Electromagnetic Waves, Airlie, Va. (abstract).

    Google Scholar 

  • Albert, E. N. (1978a) Ultrastructural pathology associated with microwave induced blood—brain barrier permeability. In: URSI International Symposium on Biological Effects of Electromagnetic Waves, Helsinki, p. 58.

    Google Scholar 

  • Albert, E. N. (1978b) Ultrastructural pathology associated with microwave induced alterations in blood—brain barrier permeability. In: Proc. Biol. Eff. E.M. Waves. XIX Gen. Assembly. Int. Union Radio Sci., Helsinki, p. 58.

    Google Scholar 

  • Albert, E. N. (1979) Reversibility of microwave induced blood—brain barrier permeability. Radio Sci. 14: 323.

    Article  Google Scholar 

  • Albert, E. N., and M. DeSantis (1975) Do microwaves alter nervous system-structure? Ann. N.Y. Acad. Sci. 247: 87.

    Article  Google Scholar 

  • Albert, E. N., and M. E. DeSantis (1977) Histological observations on central nervous system. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 299–310.

    Google Scholar 

  • Albert, E. N., and J. Kerns (1981) Reversible microwave effects on the blood—brain barrier. Brain Res. 230: 153.

    Article  Google Scholar 

  • Albert, E. N., F. J. Slaby, K. Patunraj, and D. Balzano (1980a) 147 MHz RF irradiation does not increase calcium release from chick brains. Bioelectromagnetics 1: 212A.

    Google Scholar 

  • Albert, E. N., C. F. Blackman, and F. Slaby (1980b) Calcium dependent secretory protein release and calcium efflux after VHF electromagnetic radiation of rat pancreatic tissue. In: Proc. URSI Symposium on Electromagnetic Waves and Biology, A. J. Berteaud (ed.). Paris, pp. 330–336.

    Google Scholar 

  • Albert, E. N., M. F. Sherif, N. J. Papadopoulos, F. J. Slaby, and J. Monahan (1980a) Effect of 100 MHz and 2.45 GHz on rat cerebellar Purkinje cells. Bioelectromagnetics 1: 206A.

    Google Scholar 

  • Arber, S. L. (1976) Effect of microwaves on resting potential of giant neurons of mollusk Helix pomatia. Elektron. Obrab. Mater. 6: 7S.

    Google Scholar 

  • Austin, G. N., and S. M. Horvath (1954) Production of convulsions in rats by high frequency electrical currents. Am. J. Phys. Med. 3: 141.

    Google Scholar 

  • Baldwin, M. S., S. A. Bach, and S. A. Lewis (1960) Effects of radio frequency energy on primate cerebral activity. Neurology 10: 178.

    Article  Google Scholar 

  • Baranski, S. (1972) Histological and histochemical effects of microwave irradiation on the central nervous system of rabbits and guinea pigs. Am. J. Phys. Med. 51: 182.

    Google Scholar 

  • Baranski, S., and P. Czerski (1976) Biological Effects of Microwaves. Dowden, Hutchinson & Ross, Stroudsburg, Pa.

    Google Scholar 

  • Baranski, S., and Z. Edelwejn (1967) Electroencephalographic and morphological investigations on the influence of microwaves on the central nervous system. Acta Physiol. Pol. 18: 423.

    Google Scholar 

  • Baranski, S., and Z. Edelwejn (1968) Studies on the combined effects of microwaves and some drugs on bioelectric activity of rabbit CNS. Acta Physiol. Pol. 19: 37.

    Google Scholar 

  • Baranski, S., and Z. Edelwejn (1975) Experimental morphologic and electroencephalographic studies of microwave effects on the nervous system. Ann. N.Y. Acad. Sci. 247: 109.

    Article  Google Scholar 

  • Baranski, S., L. Czekalinski, P. Czerski, and S. Haduch (1963) Experimental research on fatal effect of micrometric wave electromagnetic radiation. Rev. Med. Aeronaut. (Paris) 2: 108.

    Google Scholar 

  • Bawin, S. M., and W. R. Adey (1976) Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc. Natl. Acad. Sci. USA 73: 1999.

    Google Scholar 

  • Bawin, S. M., and W. R. Adey (1977) Calcium binding in cerebral tissues. In: Biological Effects and Measurement of Radiofrequency/Microwaves, D. G. Hazzard (ed.) HEW Publ. (FDA) 77–8026, PP. 305–313.

    Google Scholar 

  • Bawin, S. M., R. J. Gavalas-Medici, and W. R. Adey (1973) Effects of modulated very high frequency fields on specific brain rhythms in cats. Brain Res. 58: 365.

    Article  Google Scholar 

  • Bawin, S. M., L. K. Kaczmarek, and W. R. Adey (1975) Effects of modulated VHF fields on the central nervous system. Ann. N.Y. Acad. Sci. 247: 74.

    Article  Google Scholar 

  • Bawin, S. M., A. R. Sheppard, and W. R. Adey (1978) Possible mechanisms of weak electromagnetic field coupling in brain tissue. Bioelectrochem. Bioenerg. 5: 67.

    Article  Google Scholar 

  • Bilokrinitsky, V. S. (1966) Changes in the tigroid substance of neurons under the effect of radio waves. Fiziol. Zh. (Kiev) 12: 70.

    Google Scholar 

  • Bilokrinitsky, V. S., and Y. D. Dumansky (1974) Histochemical characteristics of brain enzymes with exposure to a low intensity SHF field. Presented at the 2nd Industrial and Environmental Neurology Congress, Prague.

    Google Scholar 

  • Blackman, C. F., J. A. Elder, C. M. Weil, S. G. Benane, D. C. Eichinger, and D. E. House (1979) Induction of calcium ion efflux from brain tissue by radiofrequency radiation: Effects of modulation frequency and field strength. Radio Sci. 14: 93.

    Article  Google Scholar 

  • Blackman, C. F., S. G. Benane, J. A. Edler, D. E. House, J. A. Lampe, and J. M. Faulk (1980) Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: Effect of sample number and modulation frequency on the power-density window. Bioelectromagnetics 1: 35.

    Article  Google Scholar 

  • Bondy, S. C., and J. L. Purdy (1974) Selective regulation of the blood—brain barrier by sensory input. Brain Res. 76: 542.

    Article  Google Scholar 

  • Brightman, M. W., I. Klatzo, Y. Olsson, and T. S. Reese (1970) The blood—brain barrier to protein under normal and pathological conditions. J. Neurol. Sci. 10: 215.

    Article  Google Scholar 

  • Bychkov, M. S. (1972) Neurophysiological characterization of the action mechanism of super-high frequency electromagnetic waves. In: Industrial Health and Biological Effects of Radio-Frequency Electromagnetic Waves. Materials of the Fourth All-Union Symposium, Moscow, p. 46.

    Google Scholar 

  • Bychkov, M. S., and I. S. Dronov (1974) Electroencephalographic data on the effects of very weak microwaves at the level of the midbrain reticular formation—hypothalamuscerebellar cortex level. (Translation in NTIS Rep. JPRS 63321.)

    Google Scholar 

  • Bychkov, M. S., V. Markov, and V. Rychkov (1974) Electroencephalographic changes under the influence of low intensity chronic microwave irradiation. (Translation in NTIS Rep. JPRS 63321.)

    Google Scholar 

  • Carpenter, D. O. (1967) Temperature effects on pacemaker generation, membrane potential, and critical firing threshold in Aplysia neurons. J. Gen. Physiol. 50: 1469.

    Article  Google Scholar 

  • Casterline, J. L., and C. H. Williams (1969) The effect of pesticide administration on serum and tissue esterases of rats fed diets of varying casein, calcium, and magnesium content. Toxicol Appl. Pharmacol. 15: 532.

    Article  Google Scholar 

  • Chamness, A. F., H. R. Scholes, S. W. Sexauer, and J. W. Frazer (1976) Metal ion content of specific areas of the rat brain after 1600 MHz radiofrequency irradiation. J. Microwave Power 11: 333.

    Google Scholar 

  • Chang, B. K., A. T. Huang, W. T. Joines, and R. S. Dramer (1978) The effect of microwave radiation (1.0 GHz) on the blood—brain barrier in dogs. Proc. Biol. Eff. E. M. Waves. X IX Gen. Assembly. Int. Union Radio Sci., Helsinki.

    Google Scholar 

  • Chizenkova, R. A. (1967) Brain biopotentials in the rabbit during exposure to electromagnetic fields. Fiziol. Zh. Akad. Nauk. UKR SSR (Moscow) 53: 514.

    Google Scholar 

  • Chizenkova, R. A. (1969) Background and induced activity of neurons of the optical cortex of a rabbit after the action of a SHF field. Zh. Vyssh. Nernv. Deyat. im. I. P. Pavlova 19: 495.

    Google Scholar 

  • Chou, C. A. (1975) The Effects of Electromagnetic Fields on the Nervous System. Ph.D. dissertation, University of Washington, Seattle.

    Google Scholar 

  • Clawson, C. C., J. F. Hartmann, and R. L. Vernier (1966) Electron microscopy of the effect of gram-negative endotoxin on the blood—brain barrier. J. Comp. Neurol. 127: 183.

    Article  Google Scholar 

  • Cleary, S. F. (1977) Biological effects of microwaves and radiofrequency radiation. In: CRC Critical Reviews in Environmental Control, Vol. 7, C. Straub (ed.). Chemical Rubber Co., Cleveland, pp. 121–165.

    Google Scholar 

  • Cohen, M. E., and P. D. White (1972) Neurocirculatory asthenia. Mil. Med. 137: 142.

    Google Scholar 

  • Cole, K. S. (1968) Membrane capacity. In: Ions, Impulses, and Membranes, C. A. Tobias (ed.). University of California Press, Berkeley, p. 12.

    Google Scholar 

  • Cornish, H. H. 1971 Problems posed by observations on serum enzyme change in toxicology. In: CRC Critical Reviews in Toxicology, Chemical Rubber Company, Cleveland, p. 81.

    Google Scholar 

  • Crone, C. (1963) The permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol. Scand. 58: 292.

    Article  Google Scholar 

  • Crone, C. (1965) The permeability of brain capillaries to non-electrolytes. Acta Physiol. Scand. 64: 407.

    Article  Google Scholar 

  • Czerski, P. (1975) Experimental models for the evaluation of microwave biological effects. Proc. IEEE 63: 1540.

    Article  Google Scholar 

  • de Seguin, L., and G. Castelain (1947) Action of ultrahigh frequency radiation (wavelength 21 cm) on temperature of small laboratory animals. C. R. Acad. Sci. 224: 1662.

    Google Scholar 

  • Dodge, C., and S. Kassel (1966) Soviet Research on the Neural Effects of Microwaves. ATD Report 66–133, Library of Congress, Washington, D.C.

    Google Scholar 

  • Dolina, L. A. (1961) Morphological changes in the central nervous system due to the action of centimeter waves on the organism. Arkh. Patol. 23: 51.

    Google Scholar 

  • Drogichina, E. A., M. N. Sadchikova, M. N. Snegova, G. V. Konchalovskaya, and K. T. Glotova (1966) Autonomic and cardiovascular disorders during chronic exposure to superhigh frequency electromagnetic fields. Gig. Tr. Prof. Zabol. 10: 13.

    Google Scholar 

  • Dumansky, Y. D., and M. G. Shandala (1974) The biological action and hygienic significance of electromagnetic fields of superhigh and ultrahigh frequencies in densely populated areas. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldesjog (eds.). Polish Medical Publishers, Warsaw, pp. 289–293.

    Google Scholar 

  • D’Yachenko, N. A. (1970a) Changes in thyroid function with chronic exposure to microwave radiation. Gig. Tr. Prof. Zabol. 14: 51.

    Google Scholar 

  • D’Yachenko, N. A. (1970b) Impact of SHF electromagnetic radiation on the functional state of the myocardium. Voen. Med. Zh. 2: 35.

    Google Scholar 

  • Edelwejn, Z. (1968) Attempted evaluation of the functional state of brain synapses in rabbits exposed chronically to the action of microwaves. Acta Physiol. Pol. 19: 791.

    Google Scholar 

  • Edelwejn, Z., and S. Haduch (1962) Electroencephalographic studies on persons exposed to microwave. Acta Physiol. Pol. 13: 431.

    Google Scholar 

  • Ekel, G. J. (1974) Use of conditioned reflex methods in Soviet behavioral toxicology research. In: Behavior Toxicology, C. Xintaras, B. L. Johnson, and I. de Groat (eds.). HEW Publ. (NIOSH) 140, pp. 74–126.

    Google Scholar 

  • Frey, A. H., S. R. Feld, and B. Frey (1975) Neural function and behavior: Defining the relationship. Ann. N.Y. Acad. Sci. 247: 433.

    Article  Google Scholar 

  • Fröhlich, H. (1977) Possibilities of long-and short-range electric interactions of biological systems. Neurosci. Res. Program Bull. 15: 67.

    Google Scholar 

  • Fukalova, P. P. (1964) The sensitivity of olfactory and optic analyzers in persons exposed to the effect of constantly-generated SW and USW. Tr. Nii Gig. Tr. Prof. AMN SSR (Moscow) 2: 144.

    Google Scholar 

  • Gillard, J., B. Servantie, G. Bertharion, A. M. Servantie, and J. K. C. Obrenovitch (1976) Study of the microwave-induced perturbations of the behavior by the open-field test in the white rat. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, p. 693.

    Google Scholar 

  • Ginzburg, D. A., and M. N. Sadchikova (1964) Changes in the electroencephalogram under the continuous action of radiowaves. Tr. Gig. Prof. AMN SSSR (Moscow) 2: 126.

    Google Scholar 

  • Goldstein, L., and Z. Sisko (1974) A quantitative electroencephalographic study of the acute effects of X-band microwaves in rabbits. In: Biological Effects and Health Hazards of Microwave Radiation. P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 128–133.

    Google Scholar 

  • Goncharova, N. N., V. B. Karamyshev, and N. V. Maksimenko (1966) Occupational hygiene problems in working with ultrashort-wave transmitters used in TV and radio broadcasting. Gig. Tr. Prof. Zabol. 10: 10.

    Google Scholar 

  • Gordon, Z. V. (1958) Questions on work hygiene related to the effect of a SHF-field. Zh. Gig. Tr. Prof. Zabol. 6: 14.

    Google Scholar 

  • Gordon, Z. V. (1960) The problem of the biological action of UHF. Tr. Nil Gig. Tr. Prof. USSR 1: 65.

    Google Scholar 

  • Gordon, Z. V. (1964) Problems of industrial hygiene and the biological action of various ranges of radio-waves. Herald Acad. Med. Nauk 19:42 (JPRS 27032 ).

    Google Scholar 

  • Gordon, Z. V. (1966) Biological Effect of Microwaves in Occupational Hygiene. Izd. Med., Leningrad (TT 70–50087, NASA TT F-633, 1970 ).

    Google Scholar 

  • Gordon, Z. V. (1970a) Occupational health aspects of radio-frequency electromagnetic radiation. In: Ergonomics and Physical Environmental Factors. Occupational Safety and Health Series, No. 21, International Labour Office, Geneva, p. 159.

    Google Scholar 

  • Gordon, Z. V. (1970b) Biological Effects of Microwaves in Occupational Hygiene. Israel Program for Scientific Translations, Jerusalem, pp. 56–66.

    Google Scholar 

  • Gordon, Z. V., Y. A. Lobanova, and M. S. Tolgskaya (1955) Some data on the effect of centimeter waves (experimental studies). Gig. Sanit. 12: 16.

    Google Scholar 

  • Grinbarg, A. G. (1959) VHF—HF therapy in certain affections of the peripheral nervous system. Kazan. Med. Zh. USSR 40: 59.

    Google Scholar 

  • Grodsky, I. T. (1975) Possible physical substrates for the interaction of electromagnetic fields with biologic membranes. Ann. N.Y. Acad. Sci. 247: 117.

    Article  Google Scholar 

  • Gruneau, S. P., K. J. Oscar, M. T. Falker, and S. I. Rapaport (1982) Absence of microwave effect on blood—brain barrier permeability to [14C]sucrose in the conscious rat. Exp. Neurol. 75: 299.

    Article  Google Scholar 

  • Gunn, S. A., T. C. Gould, and W. A. D. Anderson (1961) The effect of microwave radiation on morphology and function of rat testis. Lab. Invest. 10: 301.

    Google Scholar 

  • Gvozdikova, Z. M., V. M. Anan’yev, I. N. Zenina, and V. I. Zak (1964) Sensitivity of the rabbit central nervous system to a continuous (non-pulsed) ultrahigh frequency electromagnetic field. Byull. Eksp. Biol. Med. 58: 63.

    Article  Google Scholar 

  • Hardy, J. D. (1973) Posterior hypothalamus and the regulation of body temperature. Fed. Proc. 32: 1564.

    Google Scholar 

  • Johnson, C. C., and A. W. Guy (1972) Non-ionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE 60: 692.

    Article  Google Scholar 

  • Karamyshev, V. B. (1966) Physiological—hygienic characteristics of the working conditions of television and radio station personnel. In: Questions of Work Hygiene and Occupational Pathology in the Chemical and Mechanical Engineering Industries. Reports of the Scientific Session of the Institute, Ukr. Gos. Inst. Patol. Gig. Tr., Kharkov, p. 106.

    Google Scholar 

  • Kevork’yan, A. A. (1948) Working with ultrahigh frequency impulse generators from the standpoint of labor hygiene. Gig. Sanit. 4: 26.

    Google Scholar 

  • Kholodov, Y. A. (1963) Changes in the electrical activity of the rabbit cerebral cortex during exposure to a UHF—HF electromagnetic field. Part 2. The direct action of the UHF—HF field on the central nervous system. Byull. Eksp. Biol. Med. 56: 42.

    Article  Google Scholar 

  • Kholodov, Y. A. (1964) The influence of a VHF—HF electromagnetic field on the electrical activity of an isolated strip of cerebral cortex. Byull. Eksp. Biol. Med. 57: 98.

    Article  Google Scholar 

  • Kholodov, Y. A. (1966) The Effect of Electromagnetic and Magnetic Fields on the Central Nervous System. Nauka, Moscow, p. 283 (NASA TT-F-465).

    Google Scholar 

  • Kitsovskaya, I. A. (1960) An investigation of the interrelationships between the main nervous processes in rats on exposure to SHF fields of various intensities. Tr. Nii Gig. Tr. Prof. AMN SSSR 1: 75.

    Google Scholar 

  • Kitsovskaya, I. A. (1968a) The effect of radiowaves of various ranges on the nervous system (sound stimulation method). In: On the Biological Effect of Radiofrequency Electromagnetic Fields. Moscow, p. 81.

    Google Scholar 

  • Kitsovskaya, I. A. (1968b) The influence of low-intensity microwaves on indices characterizing the state of cholinergic processes. In: Work Hygiene and the Biological Effect of Radiofrequency Electromagnetic Waves. Moscow, p. 71.

    Google Scholar 

  • Klimkova-Deutschova, E. (1974) Neurologic findings in persons exposed to microwaves. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, p. 268.

    Google Scholar 

  • Kolesnik, F. A., and V. M. Malyshev (1967) The problem of clinical observation of injuries caused by SHF electromagnetic fields. Voen. Med. Zh. 4: 21.

    Google Scholar 

  • Letavet, A. A., and Z. V. Gordon (eds.) (1960) The Biological Action of Ultrahigh Frequencies. Inst. Labor Hygiene and Occupational Diseases, Acad. Med. Sci., Moscow (JPRS 12471, 1962 ).

    Google Scholar 

  • Lin, J. C., and M. F. Lin (1980) Studies on microwave and blood—brain barrier interaction. Bioelectromagnetics 1: 313.

    Article  Google Scholar 

  • Livanov, M. N., A. B. Tsypin, Y. G. Grigoriev, U. G. Kruschev, S. M. Stepanov, and A. M. Anen’yev (1960) The effect of electromagnetic fields on the bioelectric activity of cerebral cortex in rabbits. Byull. Eksp. Biol. Med. 49: 63.

    Article  Google Scholar 

  • Lobanova, Y. A., and A. V. Goncharova (1971) Investigation of conditioned-reflex activity in animals (albino rats) subjected to the effect of ultrashort and short radio-waves. Gig. Tr. Prof. Zabol. 15: 29.

    Google Scholar 

  • Lobanova, Y. A. and Z. V. Gordon (1960) The study of olfactory sensitivity in persons exposed to SHF. Tr. Nii Gig. Prof. AMN SSR 1: 52.

    Google Scholar 

  • Lorenzo, A. V., I. Shirahige, M. Liang, and C. F. Barlow (1972) Temporary alteration of cerebrovascular permeability to plasma protein during drug induced seizures. Am. J. Physiol. 223: 268.

    Google Scholar 

  • McAfee, R. D. (1961) Neurophysiological effect of 3 cm microwave radiation. Am. J. Physiol. 200: 192.

    Google Scholar 

  • McAfee, R. D. (1963) Physiological effects of thermode and microwave stimulation of peripheral nerves. Am. J. Physiol. 203: 374.

    Google Scholar 

  • McKee, A., C. H. Dorsey, D. L. Eisenbrandt, and N. E. Woden (1980) Ultrastructural observations of microwave-induced morphologic changes in the central nervous system of hamsters. Bioelectromagnetics 1: 206.

    Google Scholar 

  • Marha, K. (1963) Biological effects of RF electromagnetic waves. Prac. Lek. 15: 387.

    Google Scholar 

  • Marha, K., J. Musil, and H. Tuha (1968) Electromagnetic Fields and the Living Environment. State Health Publishing House, Prague (Transi. SBN 911302–13–7, San Francisco Press, 1971 ).

    Google Scholar 

  • Merritt, J. H., R. H. Hartzell, and J. W. Frazer (1975) The effect of 1.6 GHz on neurotransmitters in discrete areas of the brain. SAM-TR-76–3, USAF School of Aerospace Medicine, Aerospace Medical Division, pp. 1–11.

    Google Scholar 

  • Merritt, J. H., A. F. Chamness, R. H. Hartzell, and S. J. Allen (1977) Orientation effects on microwave-induced hyperthermia and neurochemical correlates. J. Microwave Power 12: 167.

    Google Scholar 

  • Merritt, J. H., A. F. Chamness, and S. J. Allen (1978) Studies in blood—brain barrier permeability after microwave-radiation. Radiat. Environ. Biophys. 15: 367.

    Article  Google Scholar 

  • Minecki, L., and R. Bilski (1961) Histopathological changes in internal organs of mice exposed to the action of microwaves. Med. Pr. 12: 337.

    Google Scholar 

  • Mishchenko, L. I. (1968) The effect of a UHF electromagnetic field on acetylcholine exchange in the brain of rats. In: Material of the Ukrainian Republic Conference of Industrial-Health Inspectors and Scientists. Session of the Kharkov Institute of Work Hygiene and Occupational Diseases, Kiev, p. 135.

    Google Scholar 

  • Mishchenko, L. I. (1969) The effect of an ultrahigh frequency electromagnetic field on carbohydrate exchange in the brain of rats. Byull. Eksp. Biol. Med. 68: 56.

    Article  Google Scholar 

  • Muratov, V. I., and A. P. Turaeva (1972) Changes in the cardiovascular system under the chronic influence of an SHF field. Voen. Med. Zh. 1: 22.

    Google Scholar 

  • Myers, R.D., and D. H. Ross (1981) Radiation and brain calcium: A review and critique. Neurosci. Biobehay. Rev. 5: 503.

    Article  Google Scholar 

  • Nair, V., and L. J. Roth (1964) Effect of x-irradiation and certain other treatments on blood—brain barrier permeability. Radiat. Res. 23: 249.

    Article  Google Scholar 

  • Nikogosyan, S. V. (1960) Effect of SHF on cholinesterase activity in blood serum and organs in animals. In: The Biological Action of Ultrahigh Frequencies, A. A. Letavet and Z. V. Gordon (eds.). Acad. Med. Sci., Moscow, p. 81 (JPRS 12471).

    Google Scholar 

  • Nikogosyan, S. V. (1964) A study of the activity of cholinesterase in blood serum and in organs of animals under the chronic influence of microwaves, p. 43; The effect of 10-cm waves on the amount of nucleic acids in the organs of animals, p. 66. In: The Biological Effect of Radiofrequency Electromagnetic Fields. Works of the Laboratory of Radiofrequency Electromagnetic Fields, Institute of Work Hygiene and Occupational Diseases, AMN SSR, Moscow.

    Google Scholar 

  • Nikogosyan, S. V. (1971) Functional condition of certain analyzers in persons subjected to the influence of radiowaves. Gig. Truda. Prof. Zabol. 7: 49.

    Google Scholar 

  • Nikogosyan, S. V., and I. A. Kitsovskaya 1968 The altered activity of cholinesterase in the CNS of animals in various functional states under the influence of low intensity decimeter waves. Gig. Tr. Prof. Zabol. 5: 5.

    Google Scholar 

  • Novitskii, Y. I., Z. V. Gordon, A. S. Presman, and Y. A. Kholodov (1971) Radio Frequencies and Microwaves, Magnetic and Electrical Fields (NASA TT F-14.021)

    Google Scholar 

  • Oldendorf, W. H. (1949) Focal neurological lesions produced by microwave irradiation. Proc. Soc. Exp. Biol. Med. 72: 432.

    Google Scholar 

  • Oldendorf, W. H. (1970) Measurement of brain uptake of radio-labeled substances using a tritiated water internal standard. Brain Res. 24: 372.

    Article  Google Scholar 

  • Oldendorf, W. H. (1971) Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol. 221: 1629.

    Google Scholar 

  • Oldendorf, W. H. (1974) Blood—brain barrier permeability to drugs. Annu. Rev. Pharmacol. 14: 239.

    Article  Google Scholar 

  • Olsson, Y., and T. S. Reese (1969) Inaccessibility of the endoneurium of sciatic nerve to exogenous proteins. Anat. Rec. 163: 319.

    Google Scholar 

  • Oscar, K. J. (1980) Interaction of Electromagnetic Energy with Absorptive Material by Thermally Inducing Elastic Stress Waves. Ph.D. thesis, American University, Washington, D.C.

    Google Scholar 

  • Oscar, K. J., S. P. Gruneau, M. T. Folker, and S. I. Rapoport (1981) Local cerebral blood flow after microwave exposure. Brain Res. 204: 220.

    Article  Google Scholar 

  • Oscar, K. J., and T. D. Hawkins (1977) Microwave alteration of the blood—brain barrier system of rats. Brain Res. 126: 281.

    Article  Google Scholar 

  • Osipov, Y. A. (1965) Occupational Hygiene and the Effects of Radio-Frequency Electromagnetic Fields on Workers. Meditsina Press, Leningrad, pp. 78–103.

    Google Scholar 

  • Paulsson, L. E., Y Hamnerius, and W. G. McLean (1977) The effects of microwave radiation on microtubules and axonal transport. Radiat Res. 70: 212.

    Article  Google Scholar 

  • Pavlov, I.P. (1927) Conditioned Reflexes. Oxford University Press, London.

    Google Scholar 

  • Pazderova, J. (1968) Effects of electromagnetic radiation of the order of centimeter and meter wavelength on human’s health. Prac. Lek. 20: 447.

    Google Scholar 

  • Pazderova-Vejlupkova, J. (1981) Update on epidemiology: Europe. Presented at the XXth Assembly of URSI, Washington, D.C.

    Google Scholar 

  • Petrov, I. R. (ed.) (1970) Influence of Microwave Radiation on the Organism of Man and Animals. Meditsina Press, Leningrad (NASA TT F-708, 1971 ).

    Google Scholar 

  • Pickard, W. F., Y. H. Barsoum, and F. J. Rosenbaum (1980) Is the Characean plasmalemma a radiofrequency rectifier? Presented at the 2nd Annual Meeting of the Bioelectromagnetics Society, San Antonio.

    Google Scholar 

  • Pinneo, L. R., R. Baus, R. D. McAfee, and J. D. Fleming (1962) The Neural Effects of Microwaves. RADC-TDR 62–231. Tulane University, New Orleans, p. 24.

    Google Scholar 

  • Portela, A., O. Llobera, S. M. Michaelson, P. A. Stewart, J. C. Perez, A. H. Guerrero, C. A. Rodriguez, and R. J. Perez (1975) Transient effects of low-level microwave irradiation on bioelectric muscle cell properties and on water permeability and its distribution. In: Fundamental and Applied Aspects of Nonionizing Radiation, S. M. Michaelson, M. W. Miller, R. Magin, and E. L. Carstensen (eds.). Plenum Press, New York, pp. 93–127.

    Chapter  Google Scholar 

  • Presman, A. S. (1965) The effect of microwaves on living organisms and biological structures. Usp. Fiz. Nauk. 86: 263.

    Google Scholar 

  • Presman, A. S. (1968) Electromagnetic Fields and Life. Izd-vo Nauka, Moscow (Transi. Plenum Press, 1970 ).

    Google Scholar 

  • Preston, E., and G. Prefontaine (1980) Cerebrovascular permeability to sucrose in the rat exposed to 2450 MHz microwaves. J. Appl. Physiol. 49: 218.

    Google Scholar 

  • Preston, E., E. J. Vavasour, and H. M. Assenheim (1978) Effect of 2450 MHz microwave irradiation on permeability of the blood—brain barrier to mannitol in the rat. In: Symposium on Electromagnetic Fields in Biological Systems. IMPI, Ottawa, Canada, p. 5 (abstract).

    Google Scholar 

  • Preston, E., E. J. Vavasour, and H. M. Assenheim (1979) Permeability of the blood—brain barrier to mannitol in the rat following 2450 MHz microwave irradiation. Brain Res. 174: 109.

    Article  Google Scholar 

  • Raichle, M. E., J. O. Eichling, and R. L. Grubb (1974) Brain permeability of water. Arch. Neurol. 30: 319.

    Article  Google Scholar 

  • Raichle, M. E., J. O. Eichung, M. G. Straatmann, M. J. Welch, K. B. Larson, and M. M. Ter-Pegossian (1976) Blood—brain barrier permeability of 14C-labeled alcohols and 150-labeled water. Am. J. Physiol. 230: 543.

    Google Scholar 

  • Rapoport, S. I., K. Ohno, W. R. Fredericks, and K. D. Pettigrew (1978) Regional cerebrovascular permeability to 14C sucrose after osmotic opening of the blood—brain barrier. Brain Res. 150: 653.

    Article  Google Scholar 

  • Reese, T. S., and M. J. Kamovsky (1967) Fine structural localization of a blood—brain barrier to exogenous peroxidase. J. Cell Biol. 34: 207.

    Article  Google Scholar 

  • Rene, A. A., J. L. Parker, J. H. Darden, and N. A. Eaton (1973) Effect of a supralethal dose of radiation on the blood—brain barrier. AFFRI Sci., Report SR73–2, AD762 411.

    Google Scholar 

  • Rinder, L., and U. Olsson (1968) Vascular permeability changes in experimental brain concussion, part I and part II. Acta Neuropathol. 11: 183.

    Google Scholar 

  • Rodzilsky, B., and J. Olszewsky (1957) Permeability of cerebral blood vessels studied by radioactive iodinated bovine albumin. Neurology 7: 279.

    Google Scholar 

  • Rogussky, S. S., L. A. Ulitsky, B. N. Bartsevich, A. V. Il’yin, and V. I. Krivenko (1970) Results of dynamic observation of persons working in an environment influenced by an SHF field. Voen. Med. Zh. 6: 39.

    Google Scholar 

  • Rupp, T., J. Montet, and J. W. Frazer 1975 A comparison of thermal and radio-frequency exposure effects on trace metal content of blood plasma and liver cell fractions of rodents. Ann. N.Y. Acad. Sci. 247: 282.

    Article  Google Scholar 

  • Sabbot, I., and A. Costin (1974) Effect of stress on the uptake of radiolabeled calcium in the pituitary gland and the brain of the rat. J. Neurochem. 22: 731.

    Article  Google Scholar 

  • Sadchikova, M. N. (1962) State of the nervous system under the influence of UHF. In: The Biological Action of Ultrahigh Frequencies, A. A. Letavet and Z. V. Gordon (eds.). Acad. Med. Sci. Moscow, p. 25.

    Google Scholar 

  • Sadchikova, M. N., and K. V. Nikonova (1971) Comparative evaluation of the state of health of persons working under conditions involving exposure to microwaves of different intensity. Tr. Nii Gig. Tr. Prof. Zabol. 15 (9): 10.

    Google Scholar 

  • Sadchikova, M. N., and A. A. Orlova (1958) Clinical picture of the chronic effects of electromagnetic microwaves. Ind. Hyg. Occup. Dis. 2: 16.

    Google Scholar 

  • Schmidt, M. J., D. E. Schmidt, and G. A. Robison (1971) Cyclic adenosine monophosphate in brain areas: Microwave irradiation as a means of tissue fixation. Science 173: 1142.

    Article  Google Scholar 

  • Schwan, H. P. (1957) Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5: 147.

    Google Scholar 

  • Schwan, H.P. (1971) Interaction of microwave and radiofrequency radiation with biological systems. IEEE Trans. Microwave Theory Tech. MIT, 19: 146.

    Article  Google Scholar 

  • Schwan, H. P. (1977) Electrical membrane potentials, tissue excitation, and various relevant interpretations. In: Biologic Effects of Electric and Magnetic Fields Associated with Proposed Project Seafarer. National Academy of Sciences, Washington, D.C., pp. 401–411.

    Google Scholar 

  • Schwarz, G. (1962) A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solutions. J. Phys. Chem. 66: 2636.

    Article  Google Scholar 

  • Seaman, R. L., and H. Wachtel (1978) Slow and rapid responses to CW and pulsed microwave radiation by individual Aplysia pacemakers. J. Microwave Power 13: 77.

    Google Scholar 

  • Sercl, M., D. Jechova, M. Komrska, J. Kovarik, V. Kyral, H. Licha, J. Licky, S. Nettl, D. Simkiva, J. Slovicek, L. Urcha, L. Zdrahal, M. Tusl, S. Svorcova, and V. Kamt (1961) On the effects of cm electromagnetic waves on the nervous system of man: radar. Sb. Ved. Pr. Lek. Fak. Karlovy Univ. Hradci Kralove 4: 427.

    Google Scholar 

  • Serdiuk, A. M. (1969) Biological effect of low-intensity ultrahigh frequency fields. Vrach. Delo 11: 108.

    Google Scholar 

  • Servantie, B., G. Bertharion, R. Joly, A. M. Servantie, J. Etienne, P. Dreyfus, and P. Escoubet (1974) Pharmacologic effects of a pulsed microwave field. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.) Polish Medical Publishers, Warsaw, pp. 36–45.

    Google Scholar 

  • Servantie, B., A. M. Servantie, and J. Etienne (1975) Synchronization of cortical neurons by a pulsed microwave field as evidenced by spectral analysis of EEG from the white rat. Ann N.Y. Acad. Sci. 247: 82.

    Article  Google Scholar 

  • Shelton, W. W., and J. H. Merritt (1979) In vitro study of microwave effects on calcium efflux in rat brain tissue. URSI Abstracts, p. 338.

    Google Scholar 

  • Shelton, W. W., and J. H. Merritt (1980) Efflux of 45Ca2+ from rat cortex tissue under microwave radiation. Bioelectromagnetics 1: 250A.

    Google Scholar 

  • Sheyvekhman, B. Y. (1949) Effect of the action of a VHF—HF field on the aural sensitivity during application of electrodes in the zone of projection of the aural zone of the cortex (lamella of temporal bone). Probi. Fiziol. Akust. 1: 122.

    Google Scholar 

  • Snyder, S. H. (1970) The effects of microwave irradiation on the turnover rate of serotonin and norepinephrine in rat brain. Annual Summary Report, Department of Pharmacology, Johns Hopkins University, p. 15.

    Google Scholar 

  • Spackman, D. H., and V. Riley (1978) Studies of RF radiation effects on blood—brain barrier permeability using fluorescein and amino acids. Proc. Biol. Eff. E.M. Waves. X IX Gen. Assembly. Int. Union Radio Sci., Helsinki.

    Google Scholar 

  • Stavinoha, W. B., B. Pepelko, and P. W. Smith (1970) Microwave radiation to inactivate cholinesterase in rat brain prior to analysis for acetylcholine. Pharmacologist 12: 257.

    Google Scholar 

  • Stavinoha, W. B., M. A. Medina, J. Frazer, S. T. Weintraub, D. H. Ross, A. T. Modak, and D. J. Jones (1976) The effects of 19 megacycle irradiation on mice and rats. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 431–448.

    Google Scholar 

  • Stverak, I., K. Marha, and G. Pafkova (1974) Some effects of various pulsed fields on animals with audiogenic epilepsy. In: Biological Effects of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 141–144.

    Google Scholar 

  • Sutton, C. H., and F. B. Carroll (1979) Effect of microwave induced hyperthermia on the blood—brain barrier of the rat. Radio Sci. 14: 329.

    Article  Google Scholar 

  • Sutton, C. H., R. L. Nunnally, and F. B. Carroll (1973) Protection of the microwave-irradiated brain with body-core hypothermia. Cryobiology 10: 513.

    Google Scholar 

  • Switzer, W. G., and D. S. Mitchell (1977) Long term effects of 2.45 GHz radiation on the ultrastructure of the cerebral cortex and on hematologic profiles of rats. Radio Sci. 12: 287.

    Article  Google Scholar 

  • Takashima, S., B. Onaral, and H. Schwan (1979) Effects of modulated RF energy on the EEG of mammalian brains. Radial Environ. Biophys. 16: 15.

    Article  Google Scholar 

  • Taylor, E. M., and B. T. Ashleman (1974) Analysis of central nervous system involvement in the microwave auditory effect. Brain Res. 74: 201.

    Article  Google Scholar 

  • Thomas, J., L. Burch, and S. Yeandle (1979) Microwave radiation and chlordiazepoxide: Synergistic effects on fixed-interval behavior. Science 203: 1357.

    Article  Google Scholar 

  • Thompson, W. D., and A. E. Bourgeois (1965) Effects of Microwave Exposure on Behavior and Related Phenomena. Primate Behavior Lab., Aeromed. Res. Lab. Rep. Wright—Patterson AFB, Ohio (ARL-TR-65–20; AD 489245 ).

    Google Scholar 

  • Tolgskaya, M. S. (1959) Morphological changes in animals exposed to 10 cm microwaves. Vop. Kurortol. Fizioter. Lech. Fiz. Kul’t. 1: 21.

    Google Scholar 

  • Tolgskaya, M. S., and Z. V. Gordon (1960) Changes in the receptor and interoreceptor apparatuses under the influence of UHF. In: The Biological Action of Ultrahigh Frequencies, A. A. Letavet and Z. V. Gordon (eds.). Acad. Med. Sci., Moscow, p. 104.

    Google Scholar 

  • Tolgskaya, M. S., and Z. V. Gordon (1964) Comparative morphological characterization of the effects of microwaves of various wavelengths. Tr. Nii Gig. Tr. Prof. AMN SSR 2: 80.

    Google Scholar 

  • Tolgskaya, M. S., and Z. V. Gordon (1973) Pathological Effects of Radio Waves. Meditsina Press, Moscow (Trans. Consultants Bureau, Plenum Press, 1973 ).

    Google Scholar 

  • Tolgskaya, M. S., Z. V. Gordon, and Y. A. Lobanova (1960) Morphological changes in experimental animals under the influence of pulsed and continuous wave SHF—UHF radiation. Tr. Nii Gig. Tr. Prof. AMN SSR 1: 90.

    Google Scholar 

  • Tomashevskaya, L. A., and Y. M. Makarenko (1967) The effect of a shortwave-electric field on certain biochemical processes in the organism. In: Hygiene of Populated Areas, Kiev, p. 38.

    Google Scholar 

  • Tyagin, N. V. (1971) Clinical Aspects of Irradiation in the SHF Range. Meditsina Press, Leningrad.

    Google Scholar 

  • Tyazhelov, V. V., R. E. Tigranian, and E. P. Khizhniak (1977) New artifact-free electrodes for recording of biological potentials in strong electromagnetic fields. Radio Sci. 12 (6S): 121.

    Article  Google Scholar 

  • Veninga, T. S. (1971) The significance of biogenic amines as radio-indicators in experimental animals with reference to man. In: Biochemical Indicators of Radiation Injury in Man. International Atomic Energy Agency, Vienna, p. 125.

    Google Scholar 

  • Wachtel, H., R. Seaman, and W. Joines (1975) Effects of low intensity microwaves on isolated neurons. Ann. N.Y. Acad. Sci. 247: 46.

    Article  Google Scholar 

  • Ward, T. R., J. A. Elder, M. D. Jong, and D. Svendsgaard (1982) Measurement of blood—brain barrier permeation in rats during exposure to 245° MHz microwaves. Bioelectromagnetics 3: 371.

    Article  Google Scholar 

  • Williams, W. M., W. Hoss, M. Formanick, and S. M. Michaelson (1984a) Effects of 2450-MHz microwave energy on the blood—brain barrier to hydrophobic molecules. A. Effect on the permeability to sodium fluoride. Brain Res. Rev. 7: 165–170.

    Article  Google Scholar 

  • Williams, W. M., M. Del Cerro and S. M. Michaelson (1984b) Effects of 2450-MHz microwave energy on the blood—brain barrier to hydrophobic molecules. B. Effect on the permeability to HRP. Brain Res. Rev. 7: 171–181.

    Article  Google Scholar 

  • Williams, W. M., J. Platner, and S. M. Michaelson (1984c) Effects of 2450-MHz microwave energy on the blood—brain barrier to hydrophobic molecules. C. Effect on the permeability to [14C]. Brain Res. Rev. 7: 183–190.

    Article  Google Scholar 

  • Williams, W. M., S-T. Lu, M. Del Cerro, and S. M. Michaelson (1984d) Effects of 2450-MHz microwave energy on the blood—brain barrier to hydrophobic molecules. D. Brain temperature and blood—brain barrier permeability to hydrophilic tracers. Brain Res. Rev. 7: 192–212.

    Google Scholar 

  • Williams, W. M., S-T. Lu, M. Del Cerro, W. Hoss, and S. M. Michaelson (1984e) Effects of 2450-MHz microwave energy on the blood—brain barrier: An overview and critique of past and present research. IEEE Trans. Microwave Theory and Techniques 32: 808–818.

    Article  Google Scholar 

  • Willis, J. A., S. T. Gaubatz, and D. O. Carpenter (1974) The role of the electrogenic sodium pump in modulation of pacemaker discharge of Aplysia neurons. J. Cell. Physiol. 84: 463.

    Article  Google Scholar 

  • Yakovleva, M. I., T. P. Shlyafer, and I. P. Tsvetkova (1968) On the question of conditioned cardiac reflexes and the functional and morphological status of cortical neurons under the action of SHF—UHF electromagnetic fields. Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova 18: 973.

    Google Scholar 

  • Yamaura, I., and S. Chichibu (1967) Super-high frequency electric field and crustacean ganglionic discharges. Tohoku J. Exp. Med. 93: 249.

    Article  Google Scholar 

  • Yermakov, Y. V. (1969) On the mechanism of developing astheno-vegetative disturbance under the chronic effect of a SHF-field. Voen. Med. Zh. 3: 42.

    Google Scholar 

  • Zeman, G. H., R. L. Chaput, Z. R. Glazer, and L. C. Gershman (1973) Gammaaminobutyric acid metabolism in rats following microwave exposure. J. Microwave Power 8: 213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michaelson, S.M., Lin, J.C. (1987). Neural Effects of Microwave/Radiofrequency Energies. In: Biological Effects and Health Implications of Radiofrequency Radiation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4614-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4614-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3202-0

  • Online ISBN: 978-1-4757-4614-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics