Linear Systems Analysis Applications in the Study of Arterial Hemodynamics

  • S. Laxminarayan
  • R. Laxminarayan
  • S. Chatterjee
  • O. Mills
  • J. Ronda
  • E. D. Weitzman


In recent years, the applications of linear systems analysis techniques have become increasingly valuable in the study and understanding of the arterial hemodynamics. The aim of this paper is to review these concepts as applied to the characterization of pressure-flow relationships in the ascending aorta.


Input Impedance Arterial System Arterial Tree Impulse Response Function Flow Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abel, F.L. (1971) Fourier analysis of left ventricular performance, Circ. Res. 28, 119–135.Google Scholar
  2. 2.
    Attinger, E.O., Sugarwara, H., Navarro, A., Ricetto, A., Martin, R. (1966) Pressure-flow relations in the dog arteries, Cir. Res., 19, 230–245.Google Scholar
  3. 3.
    Bergel, D.H. (1961) The dynamic elastic properties of the arterial wall, J. Physiol. 156, 458–469.Google Scholar
  4. 4.
    Bergal, D.H. and Milner, W.R. (1965), Pulmonary vascular impedance in the dog, Cir. Res. 16, 410–415.Google Scholar
  5. 5.
    Dick, D.E., Kendrick, J.E., Matson, G.L., and Rideout, V.C. (1968) Measurement of non-linearity in the arterial system of the dog by a new method, Cir. Res. 22, 101–112.CrossRefGoogle Scholar
  6. 6.
    Gabel, R.A. and Roberts, R.A. (1973) Signals and Linear Systems, John Wiley and Sons, New York, London, Sydney and Toronto.Google Scholar
  7. 7.
    Laxminarayan, S., Sipkema, P., and Wester-hof, N. (1978a) Characterization of the arterial system in the time domain, IEEE Trans. Biomed. Eng., BME–25, 2, 177–184.CrossRefGoogle Scholar
  8. 8.
    Laxminarayan, S. and Laxminarayan, R. (1978b) Use of swept wine wave in physiological systems analysis,1EEE Trans. Biomed. Engng., BME–24, 1, 103–105.CrossRefGoogle Scholar
  9. 9.
    Laxminarayan, S. and Laxminarayan, R. (1979c) Application of a transient analysis method in the estimation of the input impedance of the arterial system, to be published.Google Scholar
  10. 10.
    Laxminarayan, S., Laxminarayan, R. Langewouters, G.J., and Vos A.v.D. (1979b) Computing total arterial compliance of the arterial system from its input impedance, Med. & Biol. Eng. & Comp., 17, 623–628.Google Scholar
  11. 11.
    Laxminarayan, S., Laxminarayan, R. and Jongbloed, A.A. (1979a) Linear systems analysis applications by deconvolution techniques in cardiovascular systems analysis, DECUS Europe symposium, Copenhagen, Denmark.Google Scholar
  12. 12.
    Laxminarayan, S. (1979d) The calculation of forward and backward waves in the arterial system, Med. & Biol. Eng. & Comp., 17, 130.Google Scholar
  13. 13.
    McDonald, D.A. (1964) Frequency dependence of vascular impedance, Pulsatile blood blow, Ed. Attinger, E.P., McGraw-Hill, New York.Google Scholar
  14. 14.
    McDonald, D.A. (1974) Blood flow in arteries, Arnold, London.Google Scholar
  15. 15.
    Mills, C.J., Gabe, I.T., Gault, J.H., Mason, D.T., Ross (Jun) J., Braunwald, E. and Shillingford, J.P. (1970) Pressure-flow relationships and vascular impedance in man, Cardiovas. Res. 4, 405–417.Google Scholar
  16. 16.
    Nobel, M.J.M., Gabe, I.T., Trenchard, D., and Guz, A. (1967) Blood pressure and flow in the ascending aorta of conscious dogs, Cardiovas. Res., 1, 9–20.CrossRefGoogle Scholar
  17. 17.
    O’Rourke, M.F. and Taylor, M.G. (1967) Input impedance of the systemic circulation, Circ. Res. 20, 365–380.CrossRefGoogle Scholar
  18. 18.
    Papoulis, A. (1962) The Fourier integral and its applications, McGraw-Hill, New York.zbMATHGoogle Scholar
  19. 19.
    Patel, D.J., De Freitas, F.M., and Fry, D.L. (1963) Hydraulic input impedance to aorta and pulmonary artery in dogs, J. App. Phys. 18, 134–140.Google Scholar
  20. 20.
    Sipkema, P. and Westerhof, N. (1975) Effective length of the arterial system, Annals Biomed. Eng., 3, 296–307.CrossRefGoogle Scholar
  21. 21.
    Taylor, M.G. (1966) Use of random excitation and spectral analysis in the study of frequency-dependent parameters of the cardiovascular system, Cir.Res. 18, 585–595.CrossRefGoogle Scholar
  22. 22.
    Van den Bos, G.C. Westerhof, N., Elzinga, G., and Sipkema, P. (1976) Reflection in the systemic arterial system: effects of aortic and carotid occlusion, Cardiovasc. Res., 10, 565–573.CrossRefGoogle Scholar
  23. 23.
    Westerhof, N. (1968) Analogue studies of human systemic arterial hemodynamics, Ph.D., thesis, University of Pennsylvania, USA.Google Scholar
  24. 24.
    Westerhof, N., Elzinga, G. and Sipkema, P. (1971) An artificial arterial system for pumping hearts, J. of App. Physiol. 31, 5, 776–781.Google Scholar
  25. 25.
    Westerhof, N., Elzinga, G., and Van den Bos, G.C. (1973) Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree, Med. & Biol. Eng. and Comp. 11, 710–722.CrossRefGoogle Scholar
  26. 26.
    Westerhof, N., Sipkema, P., Van den Bos, G.C., and Elzinga, G. (1972) Forward and Backward waves in the arterial system, Cardiovasc. Res. 6, 648–656.CrossRefGoogle Scholar
  27. 27.
    Wetterer, E. and Kenner, Th. (1968) Grundlagen der Dynamik des arterianpulsen, Springer — Verlag, Berlin-Heidelberg — N.Y.Google Scholar
  28. 28.
    Womersley (1957) An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries, WADC Tech. Rep. TR56–614.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • S. Laxminarayan
    • 1
  • R. Laxminarayan
    • 1
  • S. Chatterjee
    • 1
  • O. Mills
    • 1
  • J. Ronda
    • 1
  • E. D. Weitzman
    • 1
  1. 1.Neurology, Montefiore Hosp. & Einstein College of Med.Chalmers Univ.BronxUSA

Personalised recommendations