Blood Flow Disturbances in the Cardiovascular System: Significance in Health and Disease

  • Paul D. Stein
  • Hani N. Sabbah
  • Frederick J. Walburn


The characteristics of blood flow in the cardiovascular system are unique in that they involve an array of variables not commonly encountered in engineering applications. Among these factors are: pulsatile flow, non-Newtonian fluid, compliant arterial walls, complex structure of entrance regions, vessel tapering, curvature and bifurcations. All of these factors interact in the determination of flow characteristics of the arterial system. Many may undergo changes in various disease states and thereby alter the characteristics of flow. The following discussion will relate to: 1) The nature of flow disturbances in normal states. 2) Its alteration under abnormal conditions. 3) Factors that tend to augment or minimize disturbances, and 4) The implications of the presence of flow disturbances in physical diagnosis, and 5) its potential in the perpetuation of cardiovascular abnormalities.


Reynolds Number Aortic Valve Aortic Stenosis Common Iliac Artery Critical Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McDonald, D.A.: The occurrence of turbulent flow in the rabbit aorta. J. Physiol. (London) 118: 340–347, 1952.Google Scholar
  2. 2.
    Seed, W.A., Wood, N.B.:Velocity patterns in the aorta. Cardiovasc. Res. 5: 319–330, 1971.CrossRefGoogle Scholar
  3. 3.
    Nerem, R.M., Rumberger, J.A., Jr., Gross, D.R., Hamlin, R.L., Geiger, G.L.: Hot film anemometer velocity measurements of arterial blood flow in horses. Circ. Res. 34: 193–203, 1974.CrossRefGoogle Scholar
  4. 4.
    Schultz, D.L., Tunstall-Pedoe, D.S., Lee, G. DeJ., Gunning, A.J., Bellhouse, B.J.: Velocity distribution and transition in the arterial system. In: Wolstenholme, G.E.W. and Knight, J., (eds.), Circulatory and Respiratory Mass Transport, (CIBA), Little, Brown Company, Boston, 1969, pp. 172–202.Google Scholar
  5. 5.
    Seed, W.A., Thomas, I.R.: The application of hot-film anemometry to the measurement of blood flow velocity in man. In: Cockrell, D.J. (ed.), Fluid-Dynamic Measurements in the Industrial and Medical Environments, Leicester University Press, Leicester, England, 1972, pp. 298–304.Google Scholar
  6. 6.
    Stein, P.D., Sabbah, H.N.: Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ. Res. 39: 58–65, 1976.CrossRefGoogle Scholar
  7. 7.
    Seed, W.A., Wood, N.B.: Development and evaluation of a hot-film velocity probe for cardiovascular studies. Cardiovasc. Res. 4: 253–263, 1970.CrossRefGoogle Scholar
  8. 8.
    Seed, W.A., Wood, N.B.: Velocity patterns in the aorta. Cardiovasc. Res. 5: 319–330, 1971.CrossRefGoogle Scholar
  9. 9.
    Nerem, R.M., Seed, W.A.: An in vivo study of aortic flow disturbances. Cardiovasc. Res. 6: 1–14, 1972.CrossRefGoogle Scholar
  10. 10.
    Wormersly, J.R.: An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Technical Report WADC TR 56–614, Dayton, Ohio, Wright Air Development Center, 1957, p. 1.Google Scholar
  11. 11.
    Stein, P.D., Walburn, F.J.: Damping effect of distensible tubes on turbulent flow: Implications in the cardiovascular system. Advances in Bioengineering, American Society of Mechanical Engineers 1979 Winter Annual Meeting, New York, pp. 117–119, 1979.Google Scholar
  12. 12.
    Walburn, F.J., Blick, E.F., Stein, P.D.: Effect of the branch-to-trunk area ratio on the transition to turbulent flow: Implications in the cardiovascular system. Biorheology (In Press).Google Scholar
  13. 13.
    Walburn, F.J. and Stein, P.D.: Effect of vessel tapering on the transition to turbulent flow: Implications in the cardiovascular system. Federation Proceedings (In Press).Google Scholar
  14. 14.
    Sabbah, H.N., Stein, P.D.: Effect of erythrocytic deformability upon turbulent blood flow. Biorheology 13: 309–314, 1976.Google Scholar
  15. 15.
    Stein, P.D., Sabbah, H.N., Blick, E.F.: Contribution of erythrocytes to turbulent blood flow. Biorheology 12: 293–299, 1975.Google Scholar
  16. 16.
    Sabbah, H.N., Stein, P.D.: Contribution of semilunar leaflets to turbulent blood flow. Biorheology 16: 101–108, 1979.Google Scholar
  17. 17.
    McDonald, D.A.: Blood Flow in Arteries. Williams and Wilkins Co., 2nd ed., Baltimore, 1974, pp. 95–97.Google Scholar
  18. 18.
    Yellin, E.L.: Laminar-turbulent transition process in pulsatile flow. Circ. Res. 19: 791–804, 1966.CrossRefGoogle Scholar
  19. 19.
    Wieting, W.D., Hall, W.C., Liotta, D., DeBakey, M.E.: Dynamic flow behavior of artificial heart valves. In: Brewer, L.A., III (ed.), Prosthetic Heart Valves, Thomas Publisher, Springfield, Ill., 1969, pp. 34–49.Google Scholar
  20. 20.
    Reif, T.H.: A preliminary flow study of a two-dimensional model of a concave-convex pivoting disc prosthetic heart valve. Proc. 7th Annual New England Bioengineering Conference, 1979, pp. 209–211.Google Scholar
  21. 21.
    Stein, P.D., Sabbah, H.N., Anbe, D.T.: Comparison of disturbances of flow in the pulmonary artery and aorta of man. Biorheology 16: 357–362, 1979.Google Scholar
  22. 22.
    Greenfield, J.C., Jr., Griggs, D.M., Jr.: Relation between pressure and diameter in main pulmonary artery of man. J. Appl. Physiol. 18: 557–559, 1963.Google Scholar
  23. 23.
    Greenfield, J.C., Jr., Patel, D.J.: Relation between pressure and diameter in the ascending aorta of man. Circ. Res. 10: 778–781, 1962.CrossRefGoogle Scholar
  24. 24.
    Davies, M.J., Pomerance, A., Lamb, D.: Techniques in examination and anatomy of the heart. In: Pomerance, A., and Davies, M.J. (eds.), The Pathology of the Heart, Blackwell Scientific Publications, Oxford, 1975, p. 21.Google Scholar
  25. 25.
    Murgo, J.P., Altobelli, S.A., Dorethy, J.F., Logsdon, J.R., McGranahan, G.M.: Normal ventricular ejection dynamics in man during rest and exercise. In: Physiologic Principles of Heart Sounds and Murmurs, AHA Monograph No. 46, 1975, pp. 92–101.Google Scholar
  26. 26.
    Shaver, J.A., Nadolny, R.A., O’Toole, J.D., Thompson, M.E., Reddy, P.S., Leon, D.F., Curtiss, E.I.: Sound pressure correlates of the second heart sound. Circulation 49: 316–325, 1974.CrossRefGoogle Scholar
  27. 27.
    Franklin, D.L., Van Citters, R.L., Rushmer, R.F.: Balance between right and left ventricular output. Circ. Res. 10: 17–26, 1962.CrossRefGoogle Scholar
  28. 28.
    Fisher, K.H., Blick, E.F.: Turbulent damping by flabby skins. J. Aircraft. 3: 163–164, 1966.CrossRefGoogle Scholar
  29. 29.
    Stehbens, W.E.: Turbulence of blood flow. Quart. J. Exptl. Physiol. 44: 110–117, 1959.Google Scholar
  30. 30.
    Roach, M.R., Scott, S., Ferguson, G.G.: The hemodynamic importance of the geometry of bifurcations in the circle of Willis (glass model studies). Stroke 3: 255–267, 1972.CrossRefGoogle Scholar
  31. 31.
    Stehbens, W.E.: Flow in glass models of arterial bifurcations and Berry aneurysms at low Reynolds numbers. Quart. J. Exper. Physiol. 60: 181–192, 1975.Google Scholar
  32. 32.
    Stein, P.D., Sabbah, H.N., Anbe, D.T., Walburn, F.J.: Blood velocity in the abdominal aorta and common iliac artery of man. Biorheology 16: 249–255, 1979.Google Scholar
  33. 33.
    Korvetz, L.J.: The effect of vessel branching on haemodynamic stability. Phys. Med. Biol 10: 417–428, 1965.CrossRefGoogle Scholar
  34. 34.
    Schlichting, H.: Boundary-Layer Theory. McGraw-Hill Book Co., Ed. 6, New York, 1968, pp. 123, 443, 445, 468–469.Google Scholar
  35. 35.
    Nubar, Y.: Blood flow slip and viscometry Biophysical J. 11: 252–264, 1971.Google Scholar
  36. 36.
    Michael, D.H.: The stability of plane Poiseuille flow of a dusty gas. J. Fluid Mech. 18: 19, 1964.zbMATHCrossRefGoogle Scholar
  37. 37.
    Murphy, J.R.: Erythrocyte shape and blood viscosity. Hemorheology, Pergamon Press, Oxford, 1968, pp. 469–478.Google Scholar
  38. 38.
    Young, L.E., Izzo, M.J., Platzer, R.F.: Hereditary Spherocytosis I. Clinical, Hematologic and Genetic Features in 28 Cases, with Particular Reference to the, Osmotic and Mechanical Fragility of Incubated Erythrocytes. Blood 6: 1073–1098, 1951.Google Scholar
  39. 39.
    Pai, S.E.: Fluid Dynamics of Jets. D. Van Nostrand, New York, 1954, pp. 98, 121, 122, 132, 133.Google Scholar
  40. 40.
    Blackshear, P.L., Jr., Dorman, F.D., Steinbach, J.H., Maybach, E.J., Singh, A., Collingham, R.E.: Shear, wall interaction and hemolysis. Trans. Am. Soc. Artif. Int. Organs 12: 113, 1966.Google Scholar
  41. 41.
    Chien, S., Usami, S., Bertles, J.R.: Abnormal rheology of oxygenated blood in sickle cell anemia. J. Clin. Invest. 49: 623–634, 1970.CrossRefGoogle Scholar
  42. 42.
    Stein, P.D., Sabbah, H.N., Mandai, A.K.: Augmentation of sickling process due to turbulent blood flow. J. Appl. Physiol. 40: 60–66, 1976.Google Scholar
  43. 43.
    Schimd-Schönbein, H., Wells, R., Goldstone, J.: Influence of deformability of human red cells upon blood viscosity. Circ. Res. 25: 131–143, 1969.CrossRefGoogle Scholar
  44. 44.
    Chien, S., Usami, S., Dellenback, R.J., Gregersen, M.L.: Blood viscosity: influence of erythrocyte deformation. Science 157: 827–829, 1967.CrossRefGoogle Scholar
  45. 45.
    Burton, C.A., Shrivastava, B.B., Hemorheology, Pergamon Press, Oxford, 1968, p. 479.Google Scholar
  46. 46.
    Metzner, A.B., Park, M.G.: Turbulent flow characteristics of viscoelastic fluids. J. Fluid Mech. 20, 291–303, 1964.CrossRefGoogle Scholar
  47. 47.
    Fung, J.S.K., Cabman, P.B.: The mode and kinetics of the human red cell doublet formation. Biorheology 11: 241–251, 1974.Google Scholar
  48. 48.
    Sabbah, H.N., Stein, P.D.: Turbulent blood flow in humans: Its primary role in the production of ejection murmurs. Circ. Res. 38: 513–525, 1976.CrossRefGoogle Scholar
  49. 49.
    Sproule, B.J., Mitchell, J.H., Miller, W.F.: Cardiopulmonary physiological responses to heavy exercise in patients with anemia. J. Clin. Invest. 39: 378–388, 1960.CrossRefGoogle Scholar
  50. 50.
    Burch, G.E., DePasquale, N.P.: Hematocrit, viscosity and coronary blood flow. Dis. Chest 48: 225–232, 1965.CrossRefGoogle Scholar
  51. 51.
    Stein, P.D., Sabbah, H.N.: Measured turbulence and its effect upon thrombus formation. Circ. Res. 35: 608–614, 1974.CrossRefGoogle Scholar
  52. 52.
    Levine, S.A., Harvey, W.P.: Clinical Auscultation of the Heart. W. B. Saunders, ed. 2, Philadelphia, 1959, pp. 196–198, 325.Google Scholar
  53. 53.
    Stein, P.D., Sabbah, H.N.: Ventricular performance measured during ejection: Studies in patients of the rate of change of ventricular power. Am. Heart J. 91: 599–606, 1976.CrossRefGoogle Scholar
  54. 54.
    Olson, H.F.: Acoustical Engineering. D. Van Nostrand, Princeton, N.J., 1957, p. 15.Google Scholar
  55. 55.
    Humphries, J.O., McKusick, V.A.: The differentiation of organic and “innocent” systolic murmurs. Prog. Cardiovasc. Dis. 5: 152–171, 1962.Google Scholar
  56. 56.
    Harris, T.N., Friedman, S., Tuncali, M.T., HallidieSmith, K.A.: Comparison of innocent cardiac murmurs of childhood with cardiac murmurs in high output states. Pediatrics 33: 341–355, 1964.Google Scholar
  57. 57.
    Rushmer, R.F., Morgan, C.: Meaning of murmurs. Am. J. Cardiol. 21: 722–730, 1968.CrossRefGoogle Scholar
  58. 58.
    Meisner, J.E., Rushmer, R.F.: Production of sounds in distensible tubes. Circ. Res. 12: 651–658, 1963.CrossRefGoogle Scholar
  59. 59.
    Yellin, E.L.: Hydraulic noise in submerged and bounded liquid jets. In: Biomedical Fluid Mechanics Symposium, New York, American Society of Mechanical Engineers, 1966, pp. 209–221.Google Scholar
  60. 60.
    Hotta, S.: The mechanism of transmission of the cardiovascular sound; an experimental study of the conduction velocity of sound on the chest wall. Jap. Heart J. 8: 354–368, 1967.CrossRefGoogle Scholar
  61. 61.
    Bruns, D.L.: A general theory of the causes of murmurs in the cardiovascular s},tem. Am. J. Med. 27: 360–374, 1959.CrossRefGoogle Scholar
  62. 62.
    Stein, P.D., Sabbah, H.N.: Aortic origin of innocent murmurs. Am. J. Cardiol. 39: 665–671, 1977.CrossRefGoogle Scholar
  63. 63.
    Fowler, N.O.: Cardiac Diagnosis. Hoeber Medical Division Harper and Row, New York, 1968, p. 153.Google Scholar
  64. 64.
    Lewis, D.H., Ertugrul, A., Deitz, G.W., et al.: Intracardiac phonocardiography in the diagnosis of congenital heart disease. Pediatrics 23: 837–853, 1959.Google Scholar
  65. 65.
    Segal, B.L, Novak, P., Kasparian, H.: Intracardiac phonocardiography. Am. J. Cardiol. 13: 188–197, 1964.CrossRefGoogle Scholar
  66. 66.
    Tavel, M.E.“ Innocent murmurs. In: Leon, D.F., Shaver, J.A. (eds.), American Heart Association Monograph 46, Physiologic Principles of Heart Murmurs, American Heart Association, New York, 1975, pp. 102–106.Google Scholar
  67. 67.
    Liebman, J., Sood, S.: Diastolic murmurs in apparently normal children. Circulation 38: 755–762, 1968.CrossRefGoogle Scholar
  68. 68.
    Luisada, A.A., Liu, C.K., Szatkowski, J., et al.: Intracardiac phonocardiography in 172 cases studied by left or right heart catheterization or both. Acta Cardiol. 18: 533–570, 1963.Google Scholar
  69. 69.
    Monchy, C.D.: Studies on functional heart murmurs in children. I. The external carotid tracing of children with a precordial vibratory murmur. Ann. Paediatr. 206: 356–362, 1966.Google Scholar
  70. 70.
    Wennevold, A.: The origin of the innocent “vibratory” murmur studied with intracardiac phono-cardiography. Acta Med. Scand. 181: 1–5, 1967.Google Scholar
  71. 71.
    Hinze, J.O., Turbulence, McGraw-Hill, New York, 1959, p. 3, 421.Google Scholar
  72. 72.
    Weaver, W.F., Walker, C.H.M.: Innocent cardiovascular murmurs in the adult. A 16-year follow-up. Circulation 29: 702–707, 1964.CrossRefGoogle Scholar
  73. 73.
    Fogel, D.H.: The innocent systolic murmur in children: a clinical study of its incidence and characteristics. Am. Heart J. 59: 844–854, 1960.CrossRefGoogle Scholar
  74. 74.
    Groom, D., Chapman, W., Francis, W.W., Bass, A., Sihvonen, Y.T.: The normal systolic murmur. Ann. Intern. Med 52: 134–144, 1960.Google Scholar
  75. 75.
    Sabbah, H.N., Lee, T., Stein, P.D.: Role of blood viscosity in the production of innocent ejection murmurs. Am. J. Cardiol. 43: 753–756, 1979.CrossRefGoogle Scholar
  76. 76.
    Sabbah, H.N., Blick, E.F., Stein, P.D.: High—frequency pressure fluctuations: their significance in the documentation of turbulent blood flow. Cath. Cardiovasc. Diag. 3: 375–384, 1977.CrossRefGoogle Scholar
  77. 77.
    Yost, W.A., Nielsen, D.W.: Fundamentals of Hearing. Holt, Rinehart and Winston, New York, 1977, pp. 130, 136.Google Scholar
  78. 78.
    Smith, R.L., Blick, E.F., Coalson, J., Stein, P.D.: Thrombus production by turbulence. J. Appl. Physiol. 32: 261–264, 1972.Google Scholar
  79. 79.
    Parker, J.D., Boggs, J.H., Blick, E.F.: Introduction to Fluid Mechanics and Heat Transfer. Addison—Wesley Publishing Company, Reading, Massachusetts, 1969, pp. 224–225.Google Scholar
  80. 80.
    Goldsmith, H.L.: Flow of model particles and blood cells and its relation to thrombogenesis. In: Spaet, T.H. (ed.), Progress in Hemostasis and Thrombosis, vol. 1, Grune Stratton, New York, 1972, pp. 97–172.Google Scholar
  81. 81.
    Stein, P.D., Sabbah, H.N., Pitha, J. V.: Continuing disease process of calcific aortic stenosis. Role of microthrombi and turbulent flow. Am. J. Cardiol. 39: 159–169, 1977.CrossRefGoogle Scholar
  82. 82.
    Riddle, J.M., Magilligan, D.J., Stein, P.D.: Surface topography of stenotic aortic valves: A scanning electron microscopic study. Circulation (In Press).Google Scholar
  83. 83.
    Eyster, E., Mayer, K., McKenzie, S.: Traumatic hemolysis with iron deficiency anemia in patients with aortic valve Lesions. Ann. Intern. Med. 68:Google Scholar
  84. 84.
    Forshaw, J., Harwood, L.: Red blood cell abnormalities in cardiac valvular disease. J. Clin. Pathol. 20: 848–853, 1967.CrossRefGoogle Scholar
  85. 85.
    Johnson, S.A.: Platelets in hemostasis. In: Seegers, W.H. (ed.), Blood Clotting Enzymology, Academic Press, New York, 1967, pp. 379–420.Google Scholar
  86. 86.
    Stein, P.D., Parsons, E.D., Blick, E.F.: Modifications of dynamic flow properties of turbulently flowing human blood by long chain polymers. Med. Res. Eng. 11: 6–10, 1972.Google Scholar
  87. 87.
    Mostardi, R.A., Greene, H.L., Nokes, R.F., Thomas, L.C., Lue, T.: The effect of drag reducing agents on stenotic flow disturbances in dogs. Biorheology 13: 137–141, 1976.Google Scholar
  88. 88.
    White, W.D., Hoyt, J.W.: The effect of linear high molecular weight polymers on turbulent flow properties of human blood. In: Proceedings of the 8th International Conference on Medical and Biological Engineering, Chicago, 1969, Session 11–11.Google Scholar
  89. 89.
    Fry, D.L.: Acute vascular endothelial changes associated with increased blood velocity gradients. Circulation Research 22: 165–197, 1968.CrossRefGoogle Scholar
  90. 90.
    Caro, C.G., Fitz-Gerald, J.M., Schroter, R.C.: Atheroma and arterial wall shear: Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc. London 177: 109–159, 1971.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Paul D. Stein
    • 1
  • Hani N. Sabbah
    • 1
  • Frederick J. Walburn
    • 1
  1. 1.Departments of Medicine and SurgeryHenry Ford HospitalDetroitUSA

Personalised recommendations