Biochemistry of Halogenated Amino Acids

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)


When a biologically active analogue is processed to metabolites which themselves are biologically active—for example, the lethal synthesis of fluorocitrate from fluoroacetate—a combination of effects may be seen, which can complicate interpretation of biological behavior. The situation becomes even more complex when the analogue can be incorporated into macromolecular systems essential to the functioning of the organism—the diversities of biological actions of fluorouracil and bromodeoxyuridine are notable examples. This latter situation definitely pertains in the study of the biological effects of halogenated amino acids, since these analogues can function as inhibitors of specific enzymes, as substrates for incorporation into enzymes and other proteins, and as precursors of other critical biomolecules, such as aminergic neurotransmitters. Fraudulent enzymes, inactive regulatory proteins, and conformationally altered structural proteins are examples of possible consequences of analogue incorporation into protein. While this situation has complicated interpretation of biochemical observations, it also enhances the value of these analogues by virtue of their potential application to the study of a broad spectrum of cellular mechanisms.


Glutamate Decarboxylase Tryptophan Hydroxylase Phenylalanine Hydroxylase Amino Acid Analogue Alanine Racemase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, N. M., 1984. Iodine, in Biochemistry of the Essential Ultratrace Elements ( E. Frieden, ed.), Plenum, New York, pp. 33–53.CrossRefGoogle Scholar
  2. Alston, T. A., and Bright, H. J., 1983. Conversion of trifluoromethionine to a cross-linking agent by y-cystathionase, Biochem. Pharmacol. 32: 947–950.PubMedCrossRefGoogle Scholar
  3. Anderson, R. A., Nakashima, Y., and Coleman, J. E., 1975. Chemical modifications of functional residues of fd gene 5 DNA-binding protein, Biochemistry 14: 907–917.PubMedCrossRefGoogle Scholar
  4. Antonucci, T. K., and Oxender, D. L., 1986. The molecular biology of amino-acid transport in bacteria, Adv. Microb. Phys. 28: 145–180.CrossRefGoogle Scholar
  5. Arfin, S. M., and Koziell, D. A., 1971. Inhibition of growth of Salmonella typhimurium and of threonine deaminase and transaminase B by ß-chloroalanine, J. Bacteriol. 105: 519–522.PubMedGoogle Scholar
  6. Badet, B., Roise, D., and Walsh, C. T., 1984. Inactivation of the dadB Salmonella typhimurium alanine racemase by D and L isomers of ß-substituted alanines: Kinetics, stoichiometry, active site peptide sequencing, and reaction mechanism, Biochemistry 23: 5188–5194.PubMedCrossRefGoogle Scholar
  7. Bitonti, A. J., Casara, P. J., McCann, P. P., and Bey, P., 1987. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues, Biochem. J. 242: 69–74.PubMedGoogle Scholar
  8. Bode, R., Melo, C., and Birnbaum, D., 1985. Regulation of chorismate mutase, prephenate dehydrogenase, and prephenate dehydratase of Candida maltose, J. Basic Microbiol. 25: 291–298.CrossRefGoogle Scholar
  9. Borg-Olivier, S. A., Tarlinton, D., and Brown, K. D., 1987. Defective regulation of the phenylalanine biosynthetic operon in mutants of the phenylalanyl-tRNA synthetase operon. J. Bacteriol. 169: 1949–1953.PubMedGoogle Scholar
  10. Boschelli, F., Jarema, M. A. C., and Lu, P., 1981. Inducer and anti-inducer interactions with the lac repressor as seen by nuclear magnetic resonance changes at tyrosines and tryptophans. J. Biol. Chem. 256: 11595–11599.PubMedGoogle Scholar
  11. Bronskill. P. M., and Wong, J. T.-F., 1988. Suppression of fluorescence of tryptophan residues in proteins by replacement with 4-fluorotryptophan, Biochem. J. 249: 305–308.PubMedGoogle Scholar
  12. Brown. K. D., 1970. Formation of aromatic amino acid pools in Escherichia coli K-12, J. Bacteriol. 104: 177–188.PubMedGoogle Scholar
  13. Bussey. H., and Umbarger, H. E., 1970. Biosynthesis of the branched-chain amino acids in yeast: A trifluoroleucine-resistant mutant with altered regulation of leucine uptake, J. Bacteriol. 103: 286–294.PubMedGoogle Scholar
  14. Calvo. J. M.. Freundlich. M., and Umbarger, H. E., 1969. Regulation of branched-chain amino acid biosynthesis in Salmonella tvphimurium: Isolation of regulatory mutants, J. Bacterial. 97: 1272–1282.Google Scholar
  15. Cheung, K. S., Wasserman, S. A., Dudek. E., Lerner, S. A., and Johnston, M., 1983. Chloroalanyl and propargylglycyl dipeptides. Suicide substrate containing antibacterials, J. Med. Chem. 26: 1733–1741.Google Scholar
  16. Cheung, K. S., Boisvert. W., Lerner, S. A., and Johnston, M., 1986. Chloroalanyl antibiotic peptides: Antagonism of the antimicrobial effects by L-alanine and L-alanyl peptides in gram-negative bacteria. J. Med. Chen. 29: 2060–2068.Google Scholar
  17. Chiueh, C. C., Burns, R. S., Kopin. I. J., Kirk, K. L., Firnau, G., Nahmias, C., Chirakal, R., and Garnett. E. S., 1986. 6–8F-DOPA positron emission tomography visualized degree of damage to brain dopamine in basal ganglia of monkeys with MPTP-induced parkinsonism. in MPTP: A Neurotoxin Producing a Parkinsoniat Syndrome (S. Markey, ed.), Academic Press. Orlando, Florida. pp. 327–338.Google Scholar
  18. Chou. T.-C.. and Talalay. P.. 1966. The mechanism of S-adenosyl-L-methionine synthesis by purified preparations of Bakers’ yeast, Biochemistry 11: 1065–1073.CrossRefGoogle Scholar
  19. Christopherson. R. I., 1985. Chorismate mutase-prephenate dehydrogenase from Escherichia coli: Cooperative effects and inhibition by L-tyrosine, Arch. Biochem. Biophrs. 240: 646–654.CrossRefGoogle Scholar
  20. Coleman. J. E.. Anderson. R. A., Ratcliffe. R. G., and Armitage, I. M., 1976. Structure of gene 5 protein-oligodeoxynucleotide complexes as determined by `H, 19F, and 31P nuclear magnetic resonance. Biochemistry 15: 5419–5430.PubMedCrossRefGoogle Scholar
  21. Colombani, F.. Cherest, H., and De Robichon-Szulmajster, H., 1975. Biochemical and regulatory effects of methionine analogues in Saccharomyces cererisial, J. Bacterial. 122: 375–384.Google Scholar
  22. Copié. V.. Faraci, W. S.. Walsh. C. T., and Griffin, R. G., 1988. Inhibition of alanine racemase by alanine phosphonate: Detection of an imine linkage to pyridoxal 5’-phosphate in the enzyme-inhibitor complex by solid-state `’N nuclear magnetic resonance, Biochemistry 27: 4966–4970.Google Scholar
  23. Creveling. C. R.. and Kirk. K. L., 1985. The effect of ring-fluorination on the rate of 0-methylation of dihydroxyphenylalanine (DOPA) by catechol-O-methyltransferase: Significance in the development of 18F-PETT scanning agents, Biochem. Biophrs. Res. Commun. 130: 1123–1131.CrossRefGoogle Scholar
  24. Creveling. C. R.. Kirk, K. L.. and Highman. B., 1977. Effect of 2-fluorohistidine upon leukocytopoiesis in mice. Res. Commun. Chem. Pathol. Pharmacol. 16: 507–521.Google Scholar
  25. Cumming, P.. Boyes, B. E.. Martin, W. R. W., Adam, M., Grierson, J., Ruth. T.. and McGeer, E. G.. 1987. The metabolism of [t8F]6-fluoro-L-3,4-dihydroxyphenylalanine in the hooded rat. J. Neurochem. 48: 601–608.PubMedCrossRefGoogle Scholar
  26. De Clercq, E., Billiau, A., Edy, V. G., Kirk, K. L., and Cohen, L. A., 1978. Antimetabolic activities of 2-fluoro-L-histidine, Biochem. Biophys. Res. Commun. 82: 840–846.PubMedCrossRefGoogle Scholar
  27. Dunn, B. M., DiBello, C., Kirk, K. L., Cohen, L. A., and Chaiken, I. M., 1974. Synthesis, purification, and properties of a semisynthetic ribonuclease S incorporating 4-fluoro-Lhistidine at position 12, J. Biol. Chem. 249: 6295–6301.PubMedGoogle Scholar
  28. Englis, M. S., and Wheatley, D. N., 1979. Reversible retention of synchronized HeLa cells in G, of the mammalian cell cycle, Cell Biol. Int. Rep. 3: 739–746.CrossRefGoogle Scholar
  29. Fangman, W. L., and Neidhardt, F. C., 1964. Demonstration of an altered aminoacyl ribonucleic acid synthetase in a mutant of Escherichia coli, J. Biol. Chem. 239: 1839–1847.PubMedGoogle Scholar
  30. Fenster, E. D., and Anker, H. S., 1969. Incorporation into polypeptide and charging on transfer ribonucleic acid of the amino acid analogue 5’,5’,5’-trifluoroleucine by leucine auxotrophs of Escherichia coli, Biochemistry 8: 269–274.PubMedCrossRefGoogle Scholar
  31. Feuerstein, G., Lozovsky, D., Cohen, L. A., Labroo, V. M., Kirk, K. L., Kopin, I. J., and Faden, A. I., 1984. Differential effect of fluorinated analogues of TRH on the cardiovascular system and prolactin release, Neuropeptides 4: 303–310.PubMedCrossRefGoogle Scholar
  32. Firnau, G., Sood, S., Pantel, R., and Garnett, S., 1981. Phenol ionization in DOPA determines the site of methylation by catechol-O-methyltransferase, Mol. Pharmacol. 19: 130–133.PubMedGoogle Scholar
  33. Firsova, N. A., Selivanova, K. M., Alekseeva, L. V., and Evstigneeva, Z. G., 1986a. Inhibition of the glutamine synthetase activity by biologically active derivatives of glutamic acid, Biokhimiya 51: 850–855.Google Scholar
  34. Firsova, N. A., Alekseeva, L. V., Selilvanova, K. M., and Evstigneeva, Z. G., 1986b. Substrate specificity of chlorella with respect to biologically active derivatives of glutamic acid, Biokhimiya 51: 980–984.Google Scholar
  35. Fisher, G. H., Ryan, J. W., and Berryer, P., 1977. Biologically active bradykinin analogues containing p-fluorophenylalanine, Cardiovasc. Med. 2: 1179–1181.Google Scholar
  36. Fiske, M. J., Whitaker, R. J., and Jensen, R. A., 1983. Hidden overflow pathway to L-phenylalanine in Pseudomonas aeruginosa, J. Bacteriol. 154: 623–631.PubMedGoogle Scholar
  37. Fowden, L., 1972. Fluoroamino acids and protein synthesis, in Ciba Foundation Symposium: Compounds: Chemistry, Biochemistry, and Biological Activities, Associated Scientific Publishers, New York, pp. 141–159.Google Scholar
  38. Freundlich, M., and Trela, J. M., 1969. Control of isoleucine, valine, and leucine biosynthesis, VI. Effect of 5’,5’,5’-trifluoroleucine on repression in Salmonella typhimurium, J. Bacteriol. 99: 101–106.PubMedGoogle Scholar
  39. Gabius, H.-J., von der Haar, F., and Cramer, F., 1983. Evolutionary aspects of accuracy of phenylalanyl-tRNA synthetase. A comparative study with enzymes from Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, and turkey liver using phenylalanine analogues, Biochemistry 22: 2331–2339.PubMedCrossRefGoogle Scholar
  40. Gal, E. M., 1972. Molecular basis of inhibition of monooxygenases by p-halophenylalanines, Adv. Biochem. Psychopharmacol. 6: 149–163.PubMedGoogle Scholar
  41. Gal, E. M., and Whitacre, D. H., 1982. Mechanism of the irreversible inactivation of phenylalanine-4- and tryptophan-5-hydroxylases by [4–36C1,2–14C]p-chlorophenylalanine: A revision, Neurochem. Res. 7: 13–26.PubMedCrossRefGoogle Scholar
  42. Galivan, J., Coward, J. K., and McGuire, J. J., 1985. Effects of D,L-4-fluoroglutamic acid on glutamylation of methotrexate by hepatic cells in vitro, Biochem. Pharmacol. 34: 2995–2997.PubMedCrossRefGoogle Scholar
  43. Gamcsik, M. P., and Gerig, J. T., 1986. NMR studies of fluorophenylalanine-containing carbonic anhydrase, FEES Lett. 196: 71–74.CrossRefGoogle Scholar
  44. Gamcsik, M. P., Gerig, J. T., and Swenson, R. B., 1986. Fluorine-NMR studies of chimpanzee hemoglobin, Biochem. Biophys. Acta 874: 372–374.PubMedCrossRefGoogle Scholar
  45. Gamcsik, M. P., Gerig, J. T., and Gregory, D. H., 1987. fluorine nuclear magnetic resonance spectra of rabbit carbonmonoxyhemoglobin, Biochim. Biophys. Acta 912: 303–316.Google Scholar
  46. Garnett, E. S., Firnau, G., Chan, P. K. H., Sood, S., and Belbeck, L. W., 1978. [18F]FluoroDOPA, an analogue of DOPA, and its use in direct external measurements of storage, degradation, and turnover of intracerebral dopamine, Proc. Natl. Acad. Sci. USA 75: 464–467.Google Scholar
  47. Garnett, E. S., Firnau, G., and Nahmias, C., 1983. Dopamine visualized in the basal ganglia of living man, Nature 305: 137–138.PubMedCrossRefGoogle Scholar
  48. Gerig, J. T., 1978. Fluorine magnetic resonance in biochemistry, in Biological Magnetic Resonance, Vol. 1 ( L. S. Berliner and J. Reuben, eds.), Plenum, New York, pp. 139–203.CrossRefGoogle Scholar
  49. Gerig, J. T., Klinkenborg, J. C., and Nieman, R. A., 1983. Assignment of fluorine nuclear magnetic resonance signals from rabbit cyanomethemoglobin, Biochemistry 22: 2076–2087.PubMedCrossRefGoogle Scholar
  50. Gollub, E. J., Liu, K. P., and Sprinson, D. B., 1973. A regulatory gene of phenylalanine biosynthesis (pheR) in Salmonella typhimurium, J. Bacteriol. 115: 121–128.PubMedGoogle Scholar
  51. Guroff, G., Kondo, K., and Daly, J., 1966. The production of meta-chlorotyrosine from para-chlorophenylalanine by phenylalanine hydroxylase, Biochem. Biophys. Res. Commun. 25: 622–628.CrossRefGoogle Scholar
  52. Guroff, G., Daly, J. W., Jerina, D. M., Renson, J., Witkop, B., and Udenfriend, S., 1967. Hydroxylation-induced migration: The NIH shift, Science 157: 1524–1530.PubMedCrossRefGoogle Scholar
  53. Ho, C., Dowd, S. R., and Post, J. F. M., 1985. Fluorine-19 NMR investigations of membranes, Curr. Top. Bioenerg. 14: 53–95.Google Scholar
  54. Hortin, G., Stern, A. M., Miller, B., Abeles, R. H., and Boime, I., 1983. DL-threo-ßFluoroasparagine inhibits asparagine-linked glycosylation in cell-free lysates, J. Biol. Chem. 258: 4047–4050.Google Scholar
  55. Hou, Y.-M., and Schimmel, P., 1988. A simple structural feature is a major determinant of the identity of transfer RNA, Nature 333: 140–145.PubMedCrossRefGoogle Scholar
  56. Howard, R. J., Andrutis, A. T., Leech, J. H., Ellis, W. Y., Cohen, L. A., and Kirk, K. L., 1986. Histidine analogues inhibit growth and protein synthesis by Plasmodium falciparum in vitro, Biochem. Pharmacol. 35: 1589–1596.PubMedCrossRefGoogle Scholar
  57. Hsieh, K., Needleman, P., and Marshall, G. R., 1987. Long-acting angiotensin II inhibitors containing hexafluorovaline in position 8, J. Med. Chem. 30: 1097–1100.PubMedCrossRefGoogle Scholar
  58. Huestis, W. H., and Raftery, M. A., 1971. Use of fluorine-19 nuclear magnetic resonance to study conformation changes in selectively modified ribonuclease S, Biochemistry 10: 1181–1186.PubMedCrossRefGoogle Scholar
  59. Igarashi, Y., Kodama, T., and Minoda, Y., 1982. Excretion of L-tryptophan by analogue-resistant mutants of Pseudomonas hydrogenothermophila TH-1 in autotrophic cultures, Agric. Biol. Chem. 46: 1525–1530.CrossRefGoogle Scholar
  60. Im, S. W. K., and Pittard, J., 1971. Phenylalanine biosynthesis in Escherichia coli K-12: Mutants derepressed for chorismate mutase P-prephenated dehydratase, J. Bacteriol. 106: 784–790.PubMedGoogle Scholar
  61. Jacobson, M. F., Asso, J., and Baltimore, D., 1970. Further evidence on the formation of poliovirus proteins, J. Mol. Biol. 49: 657–669.PubMedCrossRefGoogle Scholar
  62. Jarema, M. A. C., Lu, P., and Miller, J. H., 1981. Genetic assignment of resonances in the NMR spectrum of a protein: lac Repressor, Proc. Natl. Acad. Sci. USA 78: 2707–2711.PubMedCrossRefGoogle Scholar
  63. Jung, M. J., Palfreyman, J., Wagner, J., Bey, P., Ribereau-Gayon, G., Zraika, M., and Koch-Weser, J., 1979. Inhibition of monoamine synthesis by irreversible blockade of aromatic amino acid decarboxylase with x-monofluoromethyldopa, Life Sci. 24: 1037–1042.PubMedCrossRefGoogle Scholar
  64. Kallio, A., McCann, P. P., and Bey, P., 1981. DL-2-(Difluoromethyl)arginine: A potent enzyme-activated irreversible inhibitor of bacterial arginine decarboxylases, Biochemistry 20: 3163–3166.PubMedCrossRefGoogle Scholar
  65. Kaufman, S., 1961. The enzymic conversion of 4-fluorophenylalanine to tyrosine, Biochim. Biophys. Acta 51: 619–621.PubMedCrossRefGoogle Scholar
  66. Kaufman, S., and Fisher, D. B., 1974. Pterin-requiring aromatic amino acid hydroxylases, in Molecular Mechanism of Oxygen Activation ( O. Hayashi, ed.), Academic Press, New York, pp. 285–369.Google Scholar
  67. Kingsbury, W. D., Boehm, J. C., Mehta, R. J., and Grappel, S. F., 1983. Transport of antimicrobial agents using peptide carrier systems: Anticandidal activity of m-tluorophenylalanine-peptide conjugates, J. Med. Chem. 26: 1725–1729.PubMedCrossRefGoogle Scholar
  68. Kirk, K. L., and Cohen, L. A., 1976. Biochemistry and pharmacology of ring-fluorinated imidazoles, in Biochemistry Involving Carbon-Fluorine Bonds (R. Filler, ed.), ACS Symposium Series, No. 28, American Chemical Society, Washington, D.C., pp. 23–36.Google Scholar
  69. Klee, C. B., Kirk, K. L., Cohen, L. A., and McPhie, P., 1975. Histidine ammoniallyase. The use of 4-fluorohistidine in identification of the rate-determining step, J. Biol. Chem. 250: 5033–5040.PubMedGoogle Scholar
  70. Klee, C. B., La John, L. E., Kirk, K. L., and Cohen, L. A., 1977. 2-Fluorourocanic acid, a potent reversible inhibitor of urocanase, Biochem. Biophys. Res. Commun. 75: 674–681.Google Scholar
  71. Klein, D. C., and Kirk, K. L., 1976. 2-Fluoro-L-histidine: A histidine analogue which inhibits enzyme induction, in Biochemistry Involving Carbon-Fluoride Bonds (R. Filler, ed.), ACS Symposium Series, No. 28, American Chemical Society, Washington, D.C., pp. 37–56.Google Scholar
  72. Klein, D. C., Weller, J. L., Kirk, K. L., and Hartley, R. W., 1977. Incorporation of 2-fluoroL-histidine into cellular protein, Mol. Pharmacol. 13: 1105–1110.PubMedGoogle Scholar
  73. Koe, B. K., and Weissman, A., 1966a. p-Chlorophenylalanine: A specific depletor of brain serotonin, J. Pharmacol. Exp. Ther. 154: 499–516.Google Scholar
  74. Koe, B. K., and Weissman, A., 1966b. Convulsions and elevation of tissue citric acid levels induced by 5-fluorotryptophan, Biochem. Pharmacol. 15: 2134–2136.PubMedCrossRefGoogle Scholar
  75. Koe, B. K., and Weissman, A., 1967. Dependence of m-fluorophenylalanine toxicity on phenylalanine hydroxylase activity, J. Pharmacol. Exp. Ther. 157: 565–573.PubMedGoogle Scholar
  76. Kollonitsch, J., 1982. Suicide substrate enzyme inactivators of enzymes dependent on pyridoxal-phosphate: ß-Fluoro amino acids and ß-fluoro amines. Design, synthesis and application: A contribution to drug design, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and Y. Kobayashi, eds.), Kodansha Ltd., Tokyo; Elsevier Biomedical Press, Amsterdam, pp. 93–122.Google Scholar
  77. Kollonitsch, J., Barash, L., Kahan, F. M., and Kropp, H., 1973. New antibacterial agent via photofluorination of a bacterial cell wall constituent, Nature 243: 346–347.PubMedCrossRefGoogle Scholar
  78. Kollonitsch, J., Patchett, A. A., Marburg, S., Maycock, A. L., Perkins, L. M., Doldouras, G. A., Duggan, D. E., and Aster, S. D., 1978. Selective inhibitors of biosynthesis of aminergic neurotransmitters, Nature 274: 906–908.PubMedCrossRefGoogle Scholar
  79. Kollonitsch, J., Marburg, S., and Perkins, L. M., 1979. Fluorodehydroxylation, a novelGoogle Scholar
  80. method for synthesis of fluoroaminoacids and fluoroamines, J. Org. Chem. 44:771–777.Google Scholar
  81. Kuo, D., and Rando, R. R., 1981. Irreversible inhibition of glutamate decarboxylase by a-(fluoromethyl)glutamic acid, Biochemistry 20: 506–511.PubMedCrossRefGoogle Scholar
  82. Labroo, V. M., Cohen, L. A., Lozovsky, D., Siren, A.-L., and Feuerstein, G., 1987. Dissociation of the cardiovascular and prolactin-releasing activities of norvaline-TRH, Neuropeptides 10: 29–36.PubMedCrossRefGoogle Scholar
  83. Likos, J. J., Ueno, H., Feldhaus, R. W., and Metzler, D. E., 1982. A novel reaction of the coenzyme of glutamate decarboxylase with L-serine-O-sulfate, Biochemistry 21: 4377–4386.PubMedCrossRefGoogle Scholar
  84. Lu, P., Jarema, M., Mosser, K., and Daniel, W. E., Jr., 1976. lac Repressor: 3-Fluorotyrosine substitution for nuclear magnetic resonance studies, Proc. Natl. Acad. Sei. USA 73: 3471–3475.Google Scholar
  85. Mamont, P. S., Danzin, C, Kolb, M., Gerhart, F., Bey, P., and Sjoerdsma, A, 1986. Marked and prolonged inhibition of mammalian omithine decarboxylase in vivo by esters of (E)-(fluoromethyl)dehydroomithine, Biochem. Pharmacol. 35: 159–165.PubMedCrossRefGoogle Scholar
  86. Manning, J. M., Merrifield, N. E., Jones, W. M., and Gotschlich, 1974. Inhibition of bacterial growth by ß-chloro-D-alanine, Proc. Natl. Acad. Sci. USA 71: 417–421.PubMedCrossRefGoogle Scholar
  87. Marquis, R. E., 1970. Fluoroamino acids and microorganisms, in Handbook of Experimental Pharmacology, Vol. XX/11 ( O. Eicher, A. Farah, H. Herken, and A. D. Welch, eds.), Springer-Verlag, New York, pp. 166–192.Google Scholar
  88. Matsui, K., Miwa, K., and Sano, K., 1987. Two single-base pair substitutions causing desensitization to tryptophan feedback inhibition of anthranilate synthase and enhanced expression of tryptophan genes of Brevibacterium lactofermentum, J. Bacteriol. 169: 5330–5332.PubMedGoogle Scholar
  89. Maycock, A. L., Aster, S. D., and Patchett, A. A., 1980. Inactivation of 3-(3,4-dihydroxyphenyl)alanine decarboxylase by 2-(fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine, Biochemistry 19: 709–718.PubMedCrossRefGoogle Scholar
  90. McGeer, E. G., Peters, D. A. V., and McGeer, P. L., 1968. Inhibition of rat brain tryptophan hydroxylase by 6-halotryptophans, Life Sci. 7: 605–615.PubMedCrossRefGoogle Scholar
  91. McGuire, J. J., and Coward, J. K., 1985. DL-threo-4-Fluoroglutamic acid. A chain-terminating inhibitor of folylpolyglutamate synthesis, J. Biol. Chem. 260: 6747–6754.PubMedGoogle Scholar
  92. Metcalf, B. W., Bey, P., Danzin, C., Jung, M. J., Casara, P., and Vevert, J. P., 1978. Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C. by substrate and product analogues, J. Am. Chem. Soc. 100: 2551–1553.CrossRefGoogle Scholar
  93. Miles, W. W., Phillips, R. S., Yeh, H. J. C., and Cohen, L. A., 1986. Isomerization of (3S)-2,3dihydro-5-fluoro-L-tryptophan and of 5-fluoro-L-tryptophan catalyzed by tryptophan synthase: Studies using fluorine-19 nuclear magnetic resonance and difference spectroscopy, Biochemistry 25: 4240–4249.PubMedCrossRefGoogle Scholar
  94. Miwa, S., Fujiwara, M., Lee, K., and Fujiwara, M., 1987. Determination of serotonin turnover in the rat brain using 6-fluorotryptophan, J. Neurochem. 48: 1577–1580.PubMedCrossRefGoogle Scholar
  95. Morino, Y., Kojima, H., and Tanase, S., 1979. Affinity labeling of alanine aminotransferase by 3-chloro-L-alanine, J. Biol. Chem. 254: 279–285.PubMedGoogle Scholar
  96. Munier, R., and Cohen, G. N., 1959. Substitution de la phénylalanine par l’o-ou la m-fluorophénylalanine dans les protéines d’escherichia coil, C. R. Acad. Sci. 248: 1870–1873.Google Scholar
  97. Neuhaus, F. C., and Hammes, W. P., 1981. Inhibition of cell wall biosynthesis by analogues of alanine, Pharmacol. Ther. 14: 265–319.PubMedCrossRefGoogle Scholar
  98. Palfreyman, M. G., Bey, P., and Sjoerdsma, A., 1987. Enzyme-activated mechanism-based inhibitors, Essays Biochem. 23: 28–81.PubMedGoogle Scholar
  99. Panton, L. J., Rossan, R. N., Escajadillo, A., Matsumoto, Y., Lee, A. T., Labroo, V. M., Kirk, K. L., Cohen, L. A., Aikawa, M., and Howard, R. J., 1988. In vitro and in vivo studies on the effects of halogenated histidine analogues on Plasmodium falciparum, Antimicrob. Agents Chemother. 32: 1655–1659.Google Scholar
  100. Pappius, H. M., Dadoun, R., and McHugh, M., 1988. The effect of p-chlorophenylalanine on cerebral metabolism and biogenic amine formation content of traumatized brain, J. Cereb. Blood Flow Metab. 8: 324–334.PubMedCrossRefGoogle Scholar
  101. Park, J. T., 1958. Selective inhibition of bacterial cell-wall synthesis: Its possible applications in chemotherapy, Symp. Gen. Microbiol. 8: 49–61.Google Scholar
  102. Patchett, A. A., Taub, D., Weissberger, B., Valiant, M. E., Gadebusch, H., Thomberry, N. A., and Bull, H. G., 1988. Antibacterial activities of fluorovinyl-and chlorovinylglycine and several derived dipeptides, Antimicrob. Agents Chemother. 32: 319–323.PubMedCrossRefGoogle Scholar
  103. Pauley, R. J., Fredricks, W. W., and Smith, O. H., 1978. Effect of tryptophan analogues on derepression of the Escherichia coli tryptophan operon by indole-3-propionic acid, J. Bacteriol. 136: 219–226.PubMedGoogle Scholar
  104. Payne, J. W., 1986. Drug delivery systems: Optimizing the structure of peptide carriers for synthetic antimicrobial drugs, Drugs Exp. Clin. Res. 12: 585–594.PubMedGoogle Scholar
  105. Peters, D. A. V., 1971. Inhibition of serotonin biosynthesis by 6-halotryptophans in vivo, Biochem. Pharmacol. 20: 1413–1420.PubMedCrossRefGoogle Scholar
  106. Pösö, H., McCann, P. P., Tanskanen, R., Bey, P., and Sjoerdsma, A., 1984. Inhibition of growth of Mycoplasma dispar by DL-a-difluoromethyllysine, a selective irreversible inhibitor of lysine decarboxylase, and reversal by cadaverine (1,5-diaminopentane), Biochem. Biophys. Res. Commun. 125: 205–210.PubMedCrossRefGoogle Scholar
  107. Rauhut, R., Gabius, H.-J., Engelhardt, R., and Cramer, F., 1985. Archaebacterial phenylalanyl-tRNA synthetase. Accuracy of the phenylalanyl-tRNA synthetase from the archaebacterium Methanosarcina barkeri, Zn(II)-dependent synthesis of diadenosine 5’,5“-P1P4-tetraphosphate, and immunological relationship of phenylalanyl-tRNA synthases from different urkingdons, J. Biol. Chem. 260: 182–187.PubMedGoogle Scholar
  108. Relyea, N. M., Tate, S. S., and Meister, A., 1974. Affinity labeling of the active center of L-aspartate-ß-decarboxylase with ß-chloro-L-alanine, J. Biol. Chem. 249: 1519–1524.PubMedGoogle Scholar
  109. Rennert, O. M., and Anker, H. S., 1963. On the incorporation of 5’,5’,5’-trifluoroleucine into protein of E. coli, Biochemistry 2: 471–476.PubMedCrossRefGoogle Scholar
  110. Richmond, M. H., 1962. The effect of amino acid analogues on growth and protein synthesis in microorganisms, Bacteriol. Rev. 26: 398–420.PubMedGoogle Scholar
  111. Ring, M., Armitage, I. M., and Huber, R. E., 1985. m-Fluorotyrosine substitution in ß-galactosidase: Evidence for the existence of a catalytically active tyrosine, Biochem. Biophys. Res. Commun. 131: 675–680.Google Scholar
  112. Robertson, J. H., and Wheatley, D. N., 1979. Pools and protein synthesis in mammalian cells, Biochem. J. 178: 699–709.PubMedGoogle Scholar
  113. Roise, D., Soda, K., Yagi, T., and Walsh, C. T., 1984. Inactivation of the Pseudomonas striata broad specificity amino acid racemase by D and L isomers of ß-substituted alanines: Kinetics, stoichiometry, active site peptide, and mechanistic studies, Biochemistry 23: 5195–5201.PubMedCrossRefGoogle Scholar
  114. Rule, G. S., Pratt, E. A., Simplaceanu, V., and Ho, C., 1987. Nuclear magnetic resonance and molecular genetic studies of the membrane-bound D-lactate dehydrogenase from Escherichia coli, Biochemistry 26: 549–556.PubMedCrossRefGoogle Scholar
  115. Santi, D. V., and Webster, R. W., 1976. Phenylalanine transfer ribonucleic acid synthetase from rat liver. Analysis of phenylalanine and adenosine 5’-triphosphate binding sites and comparison to the enzyme from Escherichia coli, J. Med. Chem. 19: 1276–1279.PubMedCrossRefGoogle Scholar
  116. Schimmel, P., 1987. Aminoacyl tRNA synthetases: General scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs, Annu. Rev. Biochem. 56: 125–158.PubMedCrossRefGoogle Scholar
  117. Schnackerz, K. D., Ehrlich, J. H., Giesemann, W., and Reed, T. A., 1979. Mechanism of action of D-serine dehydratase. Identification of a transient intermediate, Biochemistry 18: 3557–3563.PubMedCrossRefGoogle Scholar
  118. Schulman, L. H., and Abelson, J., 1988. Recent excitement in understanding transfer RNA identity, Science 240: 1591–1592.PubMedCrossRefGoogle Scholar
  119. Shiio, I., and Sugimoto, S., 1978. Altered regulatory mechanisms for tryptophan synthesis in fluorotryptophan-resistant mutants of Brevibacterium flavum, J. Biochem. 83: 879–886.PubMedGoogle Scholar
  120. Shotwell, M. A., Kilberg, M. S., and Oxender, D. L., 1983. The regulation of neutral amino acid transport in mammalian cells, Biochim. Biophys. Acta 737: 267–284.PubMedCrossRefGoogle Scholar
  121. Silverman, R. B., and Abeles, R. H., 1976. Inactivation of pyridoxal phosphate dependent enzymes by mono-and polyhaloalanines, Biochemistry 15: 4718–4723.PubMedCrossRefGoogle Scholar
  122. Silverman, R. B., and Abeles, R. H., 1977. Mechanism of inactivation of y-cystathionase by ß, ß, ß-trifluoroalanine, Biochemistry 16: 5515–5520.PubMedCrossRefGoogle Scholar
  123. Silverman, R. B., and George, C., 1988. Inactivation of y-aminobutyric acid aminotransferase by (Z)-4-amino-2-fluorobut-2-enoic acid, Biochemistry 27: 3285–3289.PubMedCrossRefGoogle Scholar
  124. Silverman, R B, and Levy, M. A., 1981. Mechanism of inactivation of y-aminobutyric acida-ketoglutaric acid aminotransferase by 4-amino-5-halopentanoic acids, Biochemistry 20: 1197–1203.PubMedCrossRefGoogle Scholar
  125. Singh, M., and Sinha, U., 1979. Mode of action of p-fluorophenylalanine in Aspergillus nidulans: Effect on the synthesis and activity of phosphatase isoenzymes, J. Gen. Microbiol. 115: 101–110.CrossRefGoogle Scholar
  126. Sjoerdsma, A., 1981. Suicide enzyme inhibitors as potential drugs, Clin. Pharmacol. Ther. 30: 3–22.PubMedCrossRefGoogle Scholar
  127. Sjoerdsma, A., and Schechter, P. J., 1984. Chemotherapeutic implications of polyamine biosynthesis inhibition, Clin. Pharm. Ther. 35: 287–300.CrossRefGoogle Scholar
  128. Smith, F. A., 1970. Biological properties of selected fluorine-containing organic compounds, in Handbook of Experimental Pharmacology, Vol. XX/11 (0. Eicher, A. Farah, H. Herken, and A. D. Welch, eds.), Springer-Verlag, New York, pp. 253–408.Google Scholar
  129. Stern, A. M., Foxman, B. M., Tashjian, A. H., Jr., and Abeles, R. H., 1982. DL-threoß-Fluoroaspartate and DL-threo-ß-fluoroasparagine: Selective cytotoxic agents for mammalian cells in culture, J. Med. Chem. 25: 544–550.Google Scholar
  130. Stern, A. M., Abeles, R. H., and Tashjian, A. H., 1984. Antitumor activity of D,L-threo-ßfluoroasparagine against human leukemia cells in culture and L1210 cells in DBA mice, Cancer Res. 44: 5614–5618.PubMedGoogle Scholar
  131. Stryer, L., 1988. Biochemistry, 3rd ed., W. H. Freeman and Company, New York.Google Scholar
  132. Sunkara, P. S., Chakroborty, B. M., Wright, D. A., and Rao, P. N., 1981. Chromosome condensing ability of mitotic proteins diminished by the substitution of phenylalanine with parafluorophenylalanine, Eur. J. Cell Biol. 23: 312–316.PubMedGoogle Scholar
  133. Sykes, B. D., and Weiner, J. H., 1980. Biosynthesis and 19F-NMR characterization of fluoroamino acid containing proteins, Magn. Reson. Biol. 1: 171–196.Google Scholar
  134. Sykes, B. D., Weingarten, H. I., and Schlesinger, M. J., 1974. Fluorotyrosine alkaline phosphatase from Escherichia coil: Preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum, Proc. Natl. Acad. Sci. USA 71: 469–473.PubMedCrossRefGoogle Scholar
  135. Tate, S. S., Relyea, N. M., and Meister, A., 1969. Interaction of L-aspartate ß-decarboxylase with ß-chloro-L-alanine. ß-Elimination reaction with active-site labeling, Biochemistry 8: 5016–5021.PubMedCrossRefGoogle Scholar
  136. Taylor, H. C., and Chaiken, I. M., 1977. Inhibitor and substrate binding by an inactive semi-synthetic ribonuclease-S’ analogue. Studies by affinity chromatography, Fed Proc. 36: 864.Google Scholar
  137. Thomberry, N. A., Bull, H. G., Taub, D., Greenlee, W. J., Patchett, A. A., and Cordes, E. H., 1987. 3-Halovinylglycines. Efficient irreversible inhibitors of E. coli alanine racemase, J. Am. Chem. Soc. 109: 7543–7544.Google Scholar
  138. Torrence, P. F., Friedman, R. M., Kirk, K. L., Cohen, L. A., and Creveling, C. R., 1979. 2-Fluorohistidine-effects on protein synthesis in cell-free systems and in mouse L-cells, Biochem. Pharmacol. 28: 1565–1567.Google Scholar
  139. Ueno, H., Likos, J. J., and Metzler, D. E., 1982. Chemistry of the inactivation of cytosolic aspartate aminotransferase by serine O-sulfate, Biochemistry 21: 4387–4393.PubMedCrossRefGoogle Scholar
  140. Uitto, J., and Prockop, D. J., 1974. Incorporation of proline analogues into collagen polypeptides. Effects on the production of extracellular procollagen and on the stability of the triple-helical structure of the molecule, Biochim. Biophys. Acta 336: 234–251.CrossRefGoogle Scholar
  141. Vidal-Cros, A., Gaudry, M., and Marquet, A., 1985. Interaction of L-threo and L-erythro isomers of 3-fluoroglutamate with glutamate decarboxylase from Escherichia coli, Biochem. J. 229: 675–678.PubMedGoogle Scholar
  142. Vine, W. H., Hsieh, K., and Marshall, G. R., 1981. Synthesis of fluorine-containing peptides. Analogues of angiotensin II containing hexafluorovaline, J. Med. Chem. 24: 1043–1047.PubMedCrossRefGoogle Scholar
  143. Vo-Quang, Y., Carniato, D., Vo-Quang, L., Lacoste, A.-M., Neuzil, E., and Le Goffic, F., 1986. (ß-Chloro-a-aminoethyl)phosphonic acids as inhibitors of alanine racemase and D-alanine:D-alanine ligase, J. Med. Chem. 29: 148–151.Google Scholar
  144. Vorhees, C. V., Butcher, R. E., and Berry, H. K., 1981. Progress in experimental phenylketonuria: A critical review, Neurosci. Biobehay. Rev. 5: 177–190.CrossRefGoogle Scholar
  145. Wacks, D. B., and Schachman, H. K., 1985a. 19F nuclear magnetic resonance studies of fluorotyrosine-labeled aspartate transcarbamoylase. Properties of the enzyme and its catalytic and regulatory subunits, J. Biol. Chem. 260: 11651–11658.Google Scholar
  146. Wacks, D. B., and Schachman, H. K., 1985b. t9F nuclear magnetic resonance studies of communication between catalytic and regulatory subunits in aspartate transcarbamoylase, J. Biol. Chem. 260: 11659–11662.Google Scholar
  147. Walsh, C., 1982. Suicide substrates: Mechanism-based enzyme inactivation, Tetrahedron 38: 871–909.CrossRefGoogle Scholar
  148. Walsh, C., 1983. Fluorinated substrate analogues: Routes of metabolism and selective toxicity, Adv. Enzymol. 55: 197–289.PubMedGoogle Scholar
  149. Walsh, C. T., 1984. Suicide substrate, mechanism-based enzyme inactivators: Recent developments, Annu. Rev. Biochem. 53: 493–535.PubMedCrossRefGoogle Scholar
  150. Wang, E., and Walsh, C., 1978. Suicide substrates for the alanine racemase of Escherichia coli B, Biochemistry 17: 1313–1321.PubMedCrossRefGoogle Scholar
  151. Wang, E., and Walsh, C., 1981. Characteristics of ß,ß-difluoroalanine and ß,ß,ß-trifluoroalanine as suicide substrates for Escherichia coli B alanine racemase, Biochemistry 20: 7539–7546.PubMedCrossRefGoogle Scholar
  152. Wanner, M. J., Hageman, J. J. M., Koomen, G.-J., and Pandit, U. K., 1980. Potential carcinostatics. 4. Synthesis and biological properties of erythro-and threo-ß-fluoroaspartic acid and erythro-ß-fluoroasparagine, J. Med. Chem. 23: 85–87.PubMedCrossRefGoogle Scholar
  153. Weissman, A., and Koe, B. K., 1967. m-Fluorotyrosine convulsions and mortality: Relationship to catecholamine and citrate metabolism, J. Pharmacol. Exp. Ther. 155: 135–144.Google Scholar
  154. Westhead, E. W., and Boyer, P. D., 1961. The incorporation of p-fluorophenylalanine into some rabbit enzymes and other proteins, Biochim. Biophys. Acta 54: 145–156.PubMedCrossRefGoogle Scholar
  155. Weygand, F., and Oettmeier, W., 1970. Fluorine-containing aminoacids, Russ. Chem. Rev. 39: 290–300.CrossRefGoogle Scholar
  156. Wheatley, D. N., 1978. Phenylalanine analogues, Int. Rev. Cytol. 55: 109–169.PubMedCrossRefGoogle Scholar
  157. Wheatley, D. N., and Henderson, J. Y., 1974. p-Fluorophenylalanine and “division-related proteins,” Nature 247: 281–283.Google Scholar
  158. Wheatley, D. N., Inglis, M. S., and Malone, P. C., 1986. The concept of the intracellular amino acid pool and its relevance in the regulation of protein metabolism, with particular reference to mammalian cells, Curr. Top. Cell. Regul. 28: 107–182.PubMedGoogle Scholar
  159. White, A., Handler, P., and Smith, E. L., 1973. Principles of Biochemistry, 5th ed., McGraw-Hill, New York, pp. 604–628.Google Scholar
  160. Wong, J. T.-F., 1983. Membership mutation of the genetic code: Loss of fitness by tryptophan, Proc. Natl. Acad. Sci. USA 80: 6303–6306.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations