Biochemistry of Halogenated Nucleosides and Nucleotides

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)


The classic biochemical studies of Peters and co-workers, demonstrating the biosynthesis of the extremely toxic fluorocitrate from fluoroacetate, provided the initial example of the profound biological consequences of lethal synthesis (Chapter 1). The syntheses of fluorinated steroids by Fried and co-workers, based in part on the precedent provided by the altered biological activity of fluorocitrate, was a second development of historical proportions (Chapter 3). Of comparable scientific impact was the synthesis of 5-fluorouracil (fl5ura), 5-fluoroorotic acid (fl5oro), and 5-fluorocytosine (fl5cyt) (Fig. 5-1) by Heidelberger et al. (1957).


Thymidine Kinase Antiviral Agent Sister Chromatid Exchange Thymidine Phosphorylase Ribonucleotide Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajmera, S., Bapat, A. R., Danenberg, K., and Danenberg, P. V., 1984. Synthesis and biological activity of 5-fluoro-2’,3’-dideoxy-3’-fluorouridine and its 5’-phosphate, J. Med. Chem. 27: 11–14.PubMedCrossRefGoogle Scholar
  2. Ajmera, S., Bapat, A. R., Stephanian, E., and Danenberg, P. V., 1988. Synthesis and interaction with uridine phosphorylase of 5’-deoxy-4’,5-difluorouridine, a new prodrug of 5-fluorouracil, J. Med. Chem. 31: 1094–1098.PubMedCrossRefGoogle Scholar
  3. Aoyama, H, Sarih-Cottin, L., Tarrago-Litvak, L., Kakiuchi, N., Litvak, S., and Guschlbauer, W., 1985. 2’-Fluoro-2’-deoxypolynucleosides as templates and inhibitors for RNA- and DNA-dependent DNA polymerases, Biochim. Biophys. Acta 824: 225–232.Google Scholar
  4. Armstrong, R. D., Lewis, M., Stern, S. G., and Cadman, E. C., 1986a. Acute effect of 5-fluorouracil on cytoplasmic and nuclear dihydrofolate reductase messenger RNA metabolism, J. Biol. Chem. 261: 7366–7371.PubMedGoogle Scholar
  5. Armstrong, R. D., Takimoto, C. H., and Cadman, E. D., 1986b. Fluoropyrimidine-mediated changes in small nuclear RNA, J. Biol. Chem. 261: 21–24.PubMedGoogle Scholar
  6. Ashley, G. W., and Stubbe, J., 1985. Current ideas on the chemical mechanism of ribonucleotide reductases, Pharmacol. Ther. 30: 301–329.PubMedCrossRefGoogle Scholar
  7. Avramis, V. I., and Plunkett, W., 1983. 2-Fluoro-ATP: A toxic metabolite of 9-ß-o-arabinosyl2-fluoroadenine, Biochem. Biophys. Res. Commun. 113: 35–43.Google Scholar
  8. Barrueco, J. R., Jacobsen, D. M., Chang, C.-H., Brockman, R. W., and Sirotnak, F. M., 1987. Proposed mechanism of therapeutic selectivity for 9-ß-D-arabinofuranosyl-2-fluoroadenine against murine leukemia based upon lower capacities for transport and phosphorylation in poliferative intestinal epithelium compared to tumor cells, Cancer Res. 47: 700–706.PubMedGoogle Scholar
  9. Beabealashvilli, R. S., Scamrov, A. V., Kutateladze, T. V., Mazo, A. M., Krayevsky, A. A., and Kukhanova, M. K., 1986. Nucleoside 5’-triphosphates modified at sugar residues as substrates for calf thymus terminal deoxynucleotidyl transferase and for AMV reverse transcriptase, Biochim. Biophys. Acta 868: 136–144.PubMedCrossRefGoogle Scholar
  10. Beltz, R. E., and Visser, D. W., 1955. Growth inhibition of Escherichia coli by new thymidine analogues, J. Am. Chem. Soc. 77: 736–738.CrossRefGoogle Scholar
  11. Benson, A. B., III, Trump, D. L., Cummings, K. B., and Fischer, P. H., 1985. Modulation of 5-iodo-2’-deoxyuridine metabolism and cytotoxicity in human bladder cancer cells by fluoropyrimidines, Biochem. Pharmacol. 34: 3925–3931.PubMedCrossRefGoogle Scholar
  12. Benz, C., and Cadman, E., 1981. Modulation of 5-fluorouracil metabolism and cytotoxicity by antimetabolite pretreatment in human colorectal adenocarcinoma HCT-8, Cancer Res. 41: 994–999.PubMedGoogle Scholar
  13. Bergstrom, D., and Swartling, D. J., 1988. Fluorine substituted analogues of nucleic acid components, in Fluorine-Containing Molecules (J. F. Liebman, A. Greenberg, and W. R. Dolbier, Jr., eds.), VCH Publishers, New York, pp. 259–308.Google Scholar
  14. Bergstrom, D., Romo, E., and Shum, P., 1987. Fluorine substituted analogues of nucleosides and nucleotides, Nucleosides Nucleotides 6: 53–63.CrossRefGoogle Scholar
  15. Biggadike, K., Borthwick, A. D., Evans, D., Exall, A. M., Kirk, B. E., Roberts, S. M., Stephenson, L., Youds, P., Slawin, M. Z., and Williams, D. J., 1987. Synthesis of fluorinated carbocyclic nucleosides: Preparation of carbocyclic 1-(2’-deoxy-6’-fluororibofuranosyl)-5-iodouracils, J. Chem. Soc., Chem. Commun. 1987: 255–256.Google Scholar
  16. Biggers, W. J., Barnea, E. R., and Sanyal, M. K., 1987. Anomalous neural differentiation induced by 5-bromo-2’-deoxyuridine during organogenesis in the rat, Teratology 35: 63–75.PubMedCrossRefGoogle Scholar
  17. Biswas, D. K., and Hanes, S. D., 1982. Increased level of prolactin gene sequences in bromodeoxyuridine treated GH cells, Nucleic Acids Res. 10: 3995–4008.PubMedCrossRefGoogle Scholar
  18. Biswas, D. K., Abdullah, K. T., and Brennessel, B. A., 1979. On the mechanism of 5-bromodeoxyuridine induction of prolactin synthesis in rat pituitary tumor cells, J. Cell Biol. 81: 1–9.PubMedCrossRefGoogle Scholar
  19. Biswas, D. K., Hartigen, J. A., and Pichler, M. H., 1984. Identification of DNA sequence responsible for 5-bromodeoxyuridine-induced gene amplification, Science 225: 941–943.PubMedCrossRefGoogle Scholar
  20. Blackburn, G. M., and Kent, D. E., 1986. Synthesis of a-and y-fluoroalkylphosphonates, J. Chem. Soc., Perk. in Trans. 1 1986:913–917.Google Scholar
  21. Blackburn, G. M., Perree, T. D., Rashid, A., Bisbal, C., and Lebleu, B., 1986. Isosteric and isopolar analogues of nucleotides, Chem. Scr. 26: 21–24.Google Scholar
  22. Boothman, D. A., Briggle, T. V., and Greer, S., 1985. Metabolic channeling of fluoro-2’deoxycytidine utilizing inhibitors of its deamination in cell culture, Mol. Pharmacol. 27: 584–594.PubMedGoogle Scholar
  23. Boothman, D. A., Briggle, T. V., and Greer, S., 1987a. Tumor-selective metabolism of 5-fluoro-2’-deoxycytidine coadministered with tetrahydrouridine compared to 5-fluorouracil in mice bearing Lewis lung carcinoma, Cancer Res. 47: 2354–2362.PubMedGoogle Scholar
  24. Boothman, D. A., Briggle, T. V., and Greer, S., 1987b. Protective, tumor-selective dual pathway activation of 5-fluoro-2’-deoxycytidine provided by tetrahydrouridine in mice bearing mammary adenocarcinoma-755, Cancer Res. 47: 2344–2353.PubMedGoogle Scholar
  25. Boothman, D A, Greer, S., and Pardee, A. B., 1987c. Potentiation of pyrimidine radiosensitizers in human carcinoma cells by ß-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho-[1,2-b]pyran-5,6-dione), a novel DNA repair inhibitor, Cancer Res. 47: 5361–5366.PubMedGoogle Scholar
  26. Brockman, R. W., Schabel, F. M., Jr., and Montgomery, J. A., 1977. Biological activity of 9-ß-D-arabinofuranosyl-2-fluoroadenine, a metabolically stable analogue of 9-ß-Darabinofuranosyladenine, Biochem. Pharmacol. 26: 2193–2196.PubMedCrossRefGoogle Scholar
  27. Bubley, G. J., Balzarini, J., Crumpacker, C. S., De Clercq, E., and Schnipper, L. E., 1987. The effect of (E)-5-(2-bromovinyl)-2’-deoxyuridine on DNA repair and mutagenesis of herpes simplex virus type 1, Virology 161: 242–244.PubMedCrossRefGoogle Scholar
  28. Caradonna, S. J., and Cheng, Y.-C., 1980. The role of deoxyuridine triphosphate nucleotidohydrolase, uracil-DNA glycosylase, and DNA polymerase a in the metabolism of FUdR in human tumor cells, Mol. Pharmacol. 18: 513–520.PubMedGoogle Scholar
  29. Carrico, C. K., and Glazer, R. I., 1979. Augmentation by thymidine of the incorporation and distribution of 5-fluorouracil in ribosomal RNA, Biochem. Biophys. Res. Commun. 87: 664–670.PubMedCrossRefGoogle Scholar
  30. Chandra, P., Demirhan, I., and De Clercq, E., 1981. A study of antitemplate inhibition of mammalian, bacterial, and viral DNA polymerases by 2- and 2’-substituted derivatives of polyadenylic acid, Cancer Leu. 12: 181–193.CrossRefGoogle Scholar
  31. Chaudhuri, N. K., Montag, B. J., and Heidelberger, C., 1958. Studies on fluorinated pyrimidines III: The metabolism of 5-fluorouracil-2–04 and 5-fluoroorotic-2-C14 acid in vivo, Cancer Res. 18: 318–328.PubMedGoogle Scholar
  32. Cheng, Y.-C., and Nakayama, K., 1983. Effects of 5-fluoro-2’-deoxyuridine on DNA metabolism in HeLa cells, Mol. Pharmacol. 23: 171–174.PubMedCrossRefGoogle Scholar
  33. Cheng, Y.-C., Dutschman, G., Fox, J. J., Watanabe, K. A., and Machida, H., 1981. Differential activity of potential antiviral nucleoside analogues on herpes simplex virus-induced and human cellular thymidine kinases, Antimicrob. Agents Chemother. 20: 420–423.PubMedCrossRefGoogle Scholar
  34. Chidgeavadze, Z. G., Scamrov, A. V., Beabealashvilli, R. Sh., Kvasyuk, E. I., Zaitseva, G. V., Mikhailopulo, I. A., Kowollik, G., and Langen, P., 1985. 3’-Fluoro-2’,3’-dideoxyribonucleoside 5’-triphosphate: Terminators of DNA synthesis, FEBS Lett. 183: 275–278.Google Scholar
  35. Chidgeavadze, Z. G., Beabealashvilli, R. Sh., Krayevsky, A. A., and Kukhanova, M. K., 1986. Nucleoside 5’-triphosphates with modified sugars as substrates for DNA polymerases, Biochim. Biophys. Acta 868: 145–152.PubMedCrossRefGoogle Scholar
  36. Clark, J. L., Berger, S. H., Mittelman, A., and Berger, F. G., 1987. Thymidylate synthase gene amplification in a colon tumor resistant to fluoropyrimidine chemotherapy, Cancer Treat. Rep. 71: 261–265.PubMedGoogle Scholar
  37. Coderre, J. A., Santi, D. V., Matsuda, A., Watanabe, K. A., and Fox, J. J., 1983. Mechanism of action of 2’,5-difluoro-l-arabinosyluracil, J. Med. Chem. 26: 1149–1152.PubMedCrossRefGoogle Scholar
  38. Cohen, S. S., Flaks, J. G., Barner, H. D., Loeb, M. R., and Lichtenstein, J., 1958. The mode of action of 5-fluorouracil and its derivatives, Proc. Natl. Acad. Sci. USA 44: 1004–1012.PubMedCrossRefGoogle Scholar
  39. Colacino, J. M., and Lopez, C., 1983. Efficacy and selectivity of some nucleoside analogues as anti-human cytomegalovirus agents, Antimicrob. Agents Chemother. 24: 505–508.PubMedCrossRefGoogle Scholar
  40. Cory, J. G., Breland, J. C., and Carter, G. L., 1979. Effect of 5-fluorouracil on RNA metabolism in Novikoff hepatoma cells, Cancer Res. 39: 4905–4913.PubMedGoogle Scholar
  41. Danenberg, P. V., 1977. Thymidylate synthetase-a target enzyme in cancer chemotherapy, Biochim. Biophys. Acta 473: 73–92.PubMedGoogle Scholar
  42. Danenberg, P. V., Heidelberger, C., Mulkins, M. A., and Peterson, A. R., 1981. The incorporation of 5-fluoro-2’-deoxyuridine into DNA of mammalian tumor cells, Biochem. Biophys. Res. Commun. 102: 654–659.PubMedCrossRefGoogle Scholar
  43. Darnell, J., Lodish, H., and Baltimore, D., 1986. Molecular Cell Biology, Scientific American Books, distributed by W. H. Freeman and Company, New York, pp. 316–321.Google Scholar
  44. De Clercq, E., 1984. Biochemical aspects of selective antiherpes activity of nucleoside analogues, Biochem. Pharmacol. 33: 2159–2169.PubMedCrossRefGoogle Scholar
  45. De Clercq, E., 1985a. Recent trends in antiviral chemotherapy, in Proceedings of the 1st International TNO Conference on Antiviral Research, Antiviral Research, Suppl. I ( A. Billiau, E. De Clercq, and H. Schellekens, eds.), Elsevier Science Publishers, Rotterdam, pp. 11–19.Google Scholar
  46. De Clercq, E., 1985b. Synthetic pyrimidine nucleoside analogues, in Approaches to Antiviral Agents ( M. E. Hamden, ed.), VCH Publishers, New York, pp. 57–99.Google Scholar
  47. De Clercq, E., and Walker, R. T., 1984. Synthesis and antiviral properties of 5-vinyl pyrimidine nucleoside analogues, Pharmacol. Ther. 26: 1–44.PubMedCrossRefGoogle Scholar
  48. De Clercq, E., Descamps, J., De Somer, P., Barr, P. J., Jones, A. S., and Walker, R. T., 1979. (E)-5-(2-Bromovinyl)-2’-deoxyuridine: A potent and selective antiherpes agent, Proc. Natl. Acad. Sci. USA 76: 2947–2951.Google Scholar
  49. De Clercq, E., Stollar, B. D., Hobbs, J., Fukui, T., Kakiuchi, N., and Ikehara, M., 1980. Interferon induction by two 2’-modified double-helical RNAs, poly(2’-fluoro-2’-deoxyinosinic acid)poly(cytidylic acid) and poly(2’-chloro-2’-deoxyinosinic acid)poly(cytidylic acid), Eur. J. Biochem. 107: 279–288.PubMedCrossRefGoogle Scholar
  50. Dexter, D. L., Woberg, W. H., Ansfield, F. J., Helson, L., and Heidelberger, C., 1972. The clinical pharmacology of 5-tritluoromethyl-2’-deoxyuridine, Cancer Res. 32: 247–253.PubMedGoogle Scholar
  51. Djordjevic, B., and Szybalski, W., 1960. Genetics of human cell lines. III. Incorporation of 5-bromo-and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity, J. Exp. Med. 112: 509–531.PubMedCrossRefGoogle Scholar
  52. Dolbeare, F., Gratzner, H., Pallavicini, M. G., and Gray, J. W., 1983. Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine, Proc. Natl. Acad. Sci. USA 80: 5573–5577.PubMedCrossRefGoogle Scholar
  53. Dollinger, M. R., Burchenal, J. H., Kries, W., and Fox, J. J., 1967. Analogues of 1-ß-oarabinofuranosylcytosine. Studies on mechanisms of action in Burkitt’s cell culture and mouse leukemia, and in vitro deamination studies, Biochem. Pharmacol. 16: 689–706.PubMedCrossRefGoogle Scholar
  54. Dolnick, B. J., and Pink, J. J., 1983. 5-Fluorouracil modulation of dihydrofolate reductase RNA levels in methotrexate-resistant KB cells, J. Biol. Chem. 258: 13299–13306.Google Scholar
  55. Dolnick, B. J., and Pink, J. J., 1985. Effects of 5-fluorouracil on dihydrofolate reductase and dihydrofolate reductase mRNA from methotrexate-resistant KB cells, J. Biol. Chem. 260: 3006–3014.PubMedGoogle Scholar
  56. Douglas, K. T., 1987. The thymidylate synthesis cycle and anticancer drugs, Med. Res. Rev. 7: 441–475.PubMedCrossRefGoogle Scholar
  57. Erickson, R. J., and Grosch, J. C., 1974. The inhibition of avian myeloblastosis virus deoxyribonucleic acid polymerase by synthetic polynucleotides, Biochemistry 13: 1987–1993.PubMedCrossRefGoogle Scholar
  58. Fanucchi, M. P., Leyland-Jones, B., Young, C. W., Burchenal, J. H., Watanabe, K. A., and Fox, J. J., 1985. Phase I trial of 1-(2’-deoxy-2’-fluoro-1-ß-o-arabinofuranosyl)5-methyluracil (FMAU), Cancer Treat. Rep. 69: 55–59.PubMedGoogle Scholar
  59. Fernandez, M. P., Young, M. F., and Sobel, M. E., 1985. Methylation of type II and type I collagen genes in differentiated and dedifferentiated chondrocytes, J. BioL Chem. 260: 2347–2378.Google Scholar
  60. Filler, R., and Naqvi, S. M., 1982. Fluorine in biomedicinal chemistry. An overview of recent advances and selected topics, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and Y. Kobayashi, eds.), Kodansha Ltd., Tokyo; Elsevier Biomedical Press, New York, pp. 1–16.Google Scholar
  61. Fox, J. J., Falco, E. A., Wempen, I., Pomeroy, D., Dowling, M. D., and Burchenal, J. H., 1972. Oral and parenteral activity of 2,2’-anhydro-1-ß-o-arabinofuranosyl-5-fluorocytosine against both intraperitoneally and intracerebrally inoculated mouse leukemia, Cancer Res. 32: 2269–2272.PubMedGoogle Scholar
  62. Fox, J. J., Watanabe, K. A., Chou, T. C., Schinazi, R. F., Soike, K. F., Fourel, I., Gantz, G., and Trepo, C., 1988. Antiviral activities of 2’-fluorinated arabinosylpyrimidine nucleosides, in Fluorinated Carbohydrates, Chemical and Biochemical Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 176–190.Google Scholar
  63. Freese, E., 1959. The specific mutagenic effect of base analogues on phage T4, J. Mol. Biol. 1: 87–105.CrossRefGoogle Scholar
  64. Fukui, T., and De Clercq, E., 1982. Inhibition of murine leukemia virus reverse transcriptase by 2-halogenated polyadenylic acids, Biochem. J. 203: 755–760.PubMedGoogle Scholar
  65. Fukui, T., De Clercq, E., Kakiuchi, N., and Ikehara, M., 1982a. Template activity of poly(2’-fluoro-2’-deoxyinosinic acid) for murine leukemia virus reverse transcriptase, Cancer Lett. 16: 129–135.PubMedCrossRefGoogle Scholar
  66. Fukui, T., Kakiuchi, N., and Ikehara, M., 1982b. Protein synthesis using poly(2’-halogeno2’-deoxyadenylic acids) as messenger, Biochim. Biophys. Acta 697: 174–177.PubMedCrossRefGoogle Scholar
  67. Garrett, C., Wataya, Y., and Santi, D. V., 1979. Thymidylate synthetase. Catalysis of dehalogenation of 5-bromo-and 5-iodo-2’-deoxyuridylate, Biochemistry 18: 2798–2804.PubMedCrossRefGoogle Scholar
  68. Glazer, G. I., and Hartman, K. D., 1983. In vivo translation of messenger RNA following exposure of human colon carcinoma cells in culture to 5-fluorouracil and 5-fluorouridine, Mol. Pharmacol. 23: 540–546.Google Scholar
  69. Glazer, R. I., and Lloyd, L. S., 1982. Association of cell lethality with incorporation of 5-fluorouracil and 5-fluorouridine into nuclear RNA in human colon carcinoma cells in culture, Mol. Pharmacol. 21: 468–473.PubMedGoogle Scholar
  70. Glazer, R. I., and Peale, A. L., 1979. The effect of 5-fluorouracil on the synthesis of nuclear RNA in L1210 cells in vitro, Mol. Pharmacol. 16: 270–277.PubMedGoogle Scholar
  71. Goulian, M., Bliele, B., and Tseng, Y. B., 1980. Methotrexate-induced misincorporation of uracil into DNA, Proc. Natl. Acad. Sci. USA 77: 1956–1960.PubMedCrossRefGoogle Scholar
  72. Goz, B., 1978. The effects of incorporation of 5-halogenated deoxyuridines into the DNA of eukaryotic cells, Pharmacol. Rev. 29: 249–271.Google Scholar
  73. Gratzner, H. G., 1982. Monoclonal antibody to 5-bromo-and 5-iodouridine: A new reagent for detection of DNA replication, Science 218: 474–475.PubMedCrossRefGoogle Scholar
  74. Gray, J. W., and Maya11, B. H. (eds.), 1985. Monoclonal antibodies against bromodeoxyuridine, Cytometry 6:499–673.Google Scholar
  75. Griengl, H., Wanek, E., Schwarz, W., Streicher, W., Rosenwirth, B., and De Clercq, E., 1987. 2’-Fluorinated arabinonucleosides of 5-(2-haloalkyl)uracil: Synthesis and antiviral activity, J. Med. Chem. 30: 1199–1204.Google Scholar
  76. Harnden, M. R. (ed.), 1985. Approaches to Antiviral Agents, VCH Publishers, New York.Google Scholar
  77. Harris, G., Ator, M., and Stubbe, J., 1984. Mechanism of inactivation of Escherichia coli and Lactobacillus leichmannii ribonucleotide reductases by 2’-chloro-2’-deoxynucleotides: Evidence for generation of 2-methylene-3-(2H)-furanone, Biochemistry 23: 5214–5225.PubMedCrossRefGoogle Scholar
  78. Heidelberger, C., 1975a. Fluorinated pyrimidines and their nucleosides, in Antineoplastic and Immunosuppressive Agents, Part II, Handbood of Experimental Pharmacology, Vol. XXXVIII/2 ( A. C. Sartorelli and D. G. Johns, eds.), Springer-Verlag, New York, pp. 193–231.Google Scholar
  79. Heidelberger, C., 1975b. On the molecular mechanisms of the antiviral activity of trifluorothymidine, Ann. N.Y. Acad. Sci. 255: 317: 325.Google Scholar
  80. Heidelberger, C., and King, D. H., 1979. Trifluorothymidine, Pharmacol. Ther. 6: 427–442.CrossRefGoogle Scholar
  81. Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R. J., Pleven, E., and Schemer, J., 1957. Fluorinated pyrimidines, a new class of tumor-inhibitory compounds, Nature 179: 663–666.PubMedCrossRefGoogle Scholar
  82. Heidelberger, C., Parsons, D., and Remy, D. C., 1962. Synthesis of trifluoromethyluracil and 5-trifluoromethyluracil-2’-deoxyuridine, J. Am. Chem. Soc. 84: 3597–3598.CrossRefGoogle Scholar
  83. Heidelberger, C., Danenberg, P., and Moran, R. G., 1983. Fluorinated pyrimidines and their nucleosides, Ada Enzymol. 54: 58–119.Google Scholar
  84. Houghton, J. A., Weiss, K. D., Williams, L G, Torrance, P. M., and Houghton, P. J., 1986. Relationship between 5-fluoro-2’-deoxyuridylate, 2’-deoxyuridylate, and thymidylate synthase activity subsequent to 5-fluorouracil administration, in xenografts of human colon adenocarcinomas, Biochem. Pharmacol. 35: 1351–1358.PubMedCrossRefGoogle Scholar
  85. Huang, P., and Plunkett, W., 1987. Phosphorolytic cleavage of 2-fluoroadenine from 9-ß-Darabinofuranosyl-2-fluoroadenine by Escherichia coli. A pathway for 2-fluoro-ATP production. Biochem. Pharmacol. 36: 2945–2950.PubMedCrossRefGoogle Scholar
  86. Hutton, J. J., Von Hoff, D. D., Kuhn, J., Philips, J., Hersh, M., and Clark, G., 1984. Phase I clinical investigation of 9-ß-o-arabinofuranosyl-2-fluoroadenine-5’-phosphate (NSC 312887), a new purine antimetabolite, Cancer Res. 44: 4183–4186.PubMedGoogle Scholar
  87. Ingraham, H. A., Tseng, B. Y., and Goulian, M., 1982. Nucleotide levels and incorporation of 5-fluorouracil and uracil into DNA cells treated with 5-fluorodeoxyuridine, Mol. Pharmacol. 21: 211–216.PubMedGoogle Scholar
  88. Jacobson, K. A., 1988. Chemical approaches to the definition of adenosine receptors, in Adenosine Receptors ( D. M. F. Cooper and C. Londos, eds.), Alan R. Liss, New York, pp. 1–26.Google Scholar
  89. Kassis, A. I., Sastry, K. S., and Adelstein, S. J., 1987. Kinetics of uptake, retention, and radiotoxicity of 125IUdR in mammalian cells: Implications of localized energy deposition by Auger processes, Radial. Res. 109: 78–89.CrossRefGoogle Scholar
  90. Kato, H., 1974. Spontaneous sister chromatid exchanges detected by a BUdR-labeling method, Nature 251: 70–72.PubMedCrossRefGoogle Scholar
  91. Kaufman, E. R., 1984. Replication of DNA containing 5-bromouracil can be mutagenic in Syrian hamster cells, Mol. Cell. Biol. 4: 2449–2454.PubMedGoogle Scholar
  92. Kaufman, E. R., 1987. Uncoupling of the induction of mutations and sister-chromatid exchanges by the replication of 5-bromouracil-substituted DNA, Mutat. Res. 176: 133–144.PubMedCrossRefGoogle Scholar
  93. Kaufman, E. R., and Davidson, R. L., 1978. Bromodeoxyuridine mutagenesis in mammalian cells: Mutagenesis is independent of the amount of bromouracil in DNA, Proc. Natl. Acad. Sci. USA 75: 4982–4986.PubMedCrossRefGoogle Scholar
  94. Kaysen, J., Spriggs, D., and Kufe, D., 1986. Incorporation of 5-fluorodeoxycytidine and metabolites into nucleic acids of human MCF-7 breast carcinoma cells, Cancer Res. 46: 4534–4538.PubMedGoogle Scholar
  95. Kessel, D., Hall, T. C., and Wodinsky, I., 1966. Nucleotide formation as a determinant of 5-fluorouracil response in mouse leukemia, Science 154: 911–913.PubMedCrossRefGoogle Scholar
  96. Keyomarsi, K., and Moran, R. G., 1986. Folinic acid augmentation of the effects of fluoropyrimidines on murine and human leukemic cells, Cancer Res. 46: 5229–5235.PubMedGoogle Scholar
  97. Kinsella, T. J., Mitchell, J. B., Russo, A., Morstyn, G., and Glatstein, E., 1984. The use of halogenated thymidine analogues as clinical radiosensitizers: Rationale, current status, and future prospects: Non-hypoxic cell sensitizers, Int. J. Radial. Oncol. Biol. Phys. 10: 1399–1406.CrossRefGoogle Scholar
  98. Kremer, A. B., Mikita, T., and Beardsley, G. P., 1987. Chemical consequences of incorporation of 5-fluorouracil into DNA as studied by NMR, Biochemistry 26: 391–397.PubMedCrossRefGoogle Scholar
  99. Kufe, D. W., Major, P. P., Egan, E. M., and Loh, E., 1981. 5-Fluoro-2’-deoxyuridine incorporation in L1210 DNA, J. Biol. Chem. 256: 8885–8888.Google Scholar
  100. Langenbach, R. J., Dannenberg, P. V., and Heidelberger, C., 1972. Thymidylate synthetase: Mechanism of inhibition by 5-fluoro-2’-deoxyuridylate, Biochem. Biophys. Res. Commun. 48: 1565–1571.PubMedCrossRefGoogle Scholar
  101. Latt, S. A., 1973. Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes, Proc. Natl. Acad. Sci. USA 70: 3395–3399.PubMedCrossRefGoogle Scholar
  102. Latt, S. A., 1974. Sister chromatid exchanges, indices of human chromosome damage and repair: Detection by fluorescence and induction by mitomycin C, Proc. Natl. Acad. Sci. USA 71: 3162–3166.PubMedCrossRefGoogle Scholar
  103. Lin, T.-S., Guo, J.-I., Schinazi, R. F., Chu, C. K., Xiang, J.-N., and Prusoff, W. H., 1988. Synthesis and antiviral activity of various 3’-azido analogues of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1, HTLV-III/LAV), J. Med. Chem. 31: 336–340.PubMedCrossRefGoogle Scholar
  104. Lonn, U., and Lonn, S., 1986. DNA lesions in human neoplastic cells and cytotoxicity of 5-fluoropyrimidines, Cancer Res. 46: 3866–3870.PubMedGoogle Scholar
  105. Mar, E.-C., Patel, P. C., Cheng, Y.-C., Fox, J. J., Watanabe, K. A., and Huang, E.-S., 1984. Effects of certain nucleoside analogues on human cytomegalovirus replication in vitro, J. Gen. Virol 65: 47–53.PubMedCrossRefGoogle Scholar
  106. Mar, E.-C., Chiou, J.-F., Cheng, Y.-C., and Huang, E.-S., 1985. Human cytomegalovirusinduced DNA polymerase and its interaction with the triphosphates of 1-(2’-deoxy2’-fluoro-ß-o-arabinofuranosyl)-5-methyluracil, -5-iodocytosine, and -5-methylcytosine, J. Virol. 56: 846–851.PubMedGoogle Scholar
  107. Marquez, V. E., Tseng, C. K.-H., Kelley, J. A., Mitsuya, H., Broder, S., Roth, J. S., and Driscoll, J. S., 1987. 2’,3’-Dideoxy-2’-fluoro-ara-A. An acid stable purine nucleoside active against human immunodeficiency virus (HIV), Biochem. Pharmacol. 36: 2719–2722.Google Scholar
  108. Mekras, J. A., Boothman, D. A., Perez, L. M., and Greer, S., 1984. Use of 5-fluorodeoxycytidine and tetrahydrouridine to exploit high levels of deoxycytidylate deaminase in tumors to achieve DNA- and target-directed therapies, Cancer Res. 44: 2551–2560.PubMedGoogle Scholar
  109. Mekras, J. A., Boothman, D. A., and Greer, S. B., 1985. Use of 5-trifluoromethyldeoxycytidine and tetrahydrouridine to circumvent catabolism and exploit high levels of cytidine deaminase in tumors to achieve DNA- and target-directed therapies, Cancer Res. 45: 5270–5280.PubMedGoogle Scholar
  110. Mini, E., Moroson, B. A., and Bertino, J. R., 1987. Cytotoxicity of floxuridine and 5-fluorouracil in human T-lymphoblast leukemia cells: Enhancement by leucovorin, Cancer Treat. Rep. 71: 381–389.PubMedGoogle Scholar
  111. Mitchell, J. B., Russo, A., Kinsella, T. J., and Glatstein, E., 1986. The use of nonhypoxic cell sensitizers in radiobiology and radiotherapy, Int. J. Radiat. Oncol. Biol. Phys. 12: 1513–1518.PubMedCrossRefGoogle Scholar
  112. Montgomery, J. A., 1982. Has the well gone dry? The first Cain memorial award lecture, Cancer Res. 42: 3911–3917.PubMedGoogle Scholar
  113. Montgomery, J. A., and Hewson, K., 1957. Synthesis of potential anticancer agents X. 2-Fluoroadenosine, J. Am. Chem. Soc. 79: 45–59.Google Scholar
  114. Myers, C. E., 1981. The pharmacology of the fluoropyrimidines, Pharmacol. Rev. 33: 1–15.PubMedGoogle Scholar
  115. Nakayama, C., Wataya, Y., and Santi, D. V., 1981. Interaction of 1-(5-phospho-ß-Darabinofuranosyl)-5-substituted-uracils with thymidylate synthetase: Mechanism-based inhibition by 1-(5-phospho-ß-n-arabinosyl)-5-fluorouracil, J. Med. Chem. 24: 1161–1165.PubMedCrossRefGoogle Scholar
  116. Newman, E. M., and Santi, D. V., 1982. Metabolism and mechanism of action of 5-fluorodeoxycytidine, Proc. Natl. Acad. Sci. USA 79: 6419–6423.PubMedCrossRefGoogle Scholar
  117. Osterman, D. G., DePillis, G. D., Wu, J. C., Matsuda, A., and Santi, D. V., 1988. 5-Fluorocytosine in DNA is a mechanism-based inhibitor of Hhal methylase, Biochemistry 27: 5204–5210.Google Scholar
  118. Paison, S. G., Hartigan, J. A., Kumar, V, and Biswas, D. K., 1987. DNA sequence responsible for the amplification of adjacent genes, DNA 6: 419–428.CrossRefGoogle Scholar
  119. Parker, W. B., Kennedy, K. A., and Klubes, P., 1987. Dissociation of 5-fluorouracil-induced DNA fragmentation from either its incorporation into DNA or its cytotoxicity in murine T-lymphoma (S-49) cells, Cancer Res. 47: 979–982.PubMedGoogle Scholar
  120. Perez, L. M., and Greer, S., 1986. Sensitization to X ray by 5-chloro-2’-deoxycytidine co-administered with tetrahydrouridine in several mammalian cell lines and studies of 2’-chloro derivatives, Int. J. Radiat. Oncol. Biol. Phys. 12: 1523–1527.PubMedCrossRefGoogle Scholar
  121. Prusoff, W. H., 1959. Synthesis and biological activity of iododeoxyuridine, an analogue of thymidine, Biochem. Biophys. Acta 32: 295–296.PubMedCrossRefGoogle Scholar
  122. Prusoff, W. H., and Goz, B., 1975. Halogenated pyrimidine deoxyribonucleosides, in Antineoplastic and Immunosuppressive Agents, Part II, Handbook of Experimental Pharmacology, Vol. XXXVIII/2 ( A. C. Sartorelli and D. G. Johns, eds.), Springer-Verlag, New York, pp. 272–347.Google Scholar
  123. Prusoff, W. H., Chen, M. S., Fischer, P. H., Lin, T.-S., Shiau, G. T., Schinaze, R. F., and Walker, J., 1979. Antiviral iodinated pyrimidine deoxyribonucleosides: 5-Iodo-2’deoxyuridine; 5-iodo-2’-deoxycytidine; 5-iodo-5’-amino-2’,5’-dideoxyuridine, Pharmacol. Ther. 7: 1–34.PubMedCrossRefGoogle Scholar
  124. Prusoff, W. H., Mancini, W. R., Lin, T.-S., Lee, J.-J., Siegel, S. A., and Otto, M. J., 1984. Physical and biological consequences of incorporation of antiviral agents into virus DNA, Antiviral Res. 4: 303–315.PubMedCrossRefGoogle Scholar
  125. Prusoff, W. H., Zucker, M., Mancini, W. R., Otto, M. J., Lin, T.-S., and Lee, J.-J., 1985. Basic biochemical and pharmacological aspects of antiviral agents, in Proceedings of the 1st International TNO Conference on Antiviral Research (A. Billau, E. De Clercq, and H. Schellekens, eds.), Antiviral Research, Suppl. 1, Elsevier Science Publishers, Rotterdam, pp. 1–10.Google Scholar
  126. Rosenwirth, B., Griengl, H., Wanek, E., and De Clercq, E., 1985. 5-(2-Chloroethynyl)2’-deoxyuridine: A potent and selective inhibitor of herpes viruses, in Proceedings of the 1st International TNO Conference on Antiviral Research (A. Billau, E. De Clercq, and H. Schellekens, eds.), Antiviral Research, Suppl. 1, Elsevier Science Publishers, Rotterdam, pp. 21–28.Google Scholar
  127. Rossler, K., Meyers, G.-J., and Stocklin, G., 1977. Labeling and animal distribution studies of 5-astatouracil and 5-astatodeoxyuridine (211 At). J. Labeled Compd. Radiopharm. 13: 271.Google Scholar
  128. Russell, K. J., Rice, G. C., and Brown, J. M., 1986. In vitro and in vivo radiation sensitization by the halogenated pyrimidine 5-chloro-2’-deoxycytidine, Cancer Res. 46: 2883–2887.Google Scholar
  129. Ruth, J. L., and Cheng, Y.-C., 1981. Nucleoside analogues with clinical potential in antivirus chemotherapy: The effect of several thymidine and 2’-deoxycytidine analogue 5’-triphosphates on purified human (a, ß) and herpes simplex virus (types 1, 2) DNA polymerases, Mol. Pharmacol. 20: 415–422.PubMedGoogle Scholar
  130. Rutter, W. J., Pictet, R. L., and Morris, P. W., 1973. Toward molecular mechanisms of developmental processes, Annu. Rev. Biochem. 42: 601–645.PubMedCrossRefGoogle Scholar
  131. Sanger, F., Nicklen, S., and Coulson, A. R., 1977. DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA 74: 5463–5467.PubMedCrossRefGoogle Scholar
  132. Santi, D. V., and McHenry, C. S., 1972. 5-Fluoro-2’-deoxyuridylate: Covalent complex with thymidylate synthetase, Proc. Natl. Acad. Sci. USA 69: 1855–1857.Google Scholar
  133. Santi, D. V., Pogolotti, A. L., James, T. L., Wataya, Y., Ivanetich, K. M., and Lam, S S M., 1976. Thymidylate synthase: Interaction with 5-fluoro and 5-trifluoromethyl-2’deoxyuridylic acid, in Biochemistry Involving Carbon-Fluorine Bonds (R. Filler, ed.), ACS Symposium Series, No. 28, American Chemical Society, Washington, D.D., pp. 57–76.Google Scholar
  134. Santi, D. V., Pogolotti, A. L., Jr., Newman, E. M., and Wataya, Y., 1982. Aspects of the biochemistry and biochemical pharmacology of 5-fluorinated pyrimidines, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and J. Kobayashi, eds.), Kodansha Ltd., Tokyo; Elsevier Biomedical, Amsterdam, pp. 123–142.Google Scholar
  135. Sapse, A. M., and Snyder, A. G., 1985. Ab Initio studies of the antiviral drug 1-(2-fluoro-2deoxy-ß-D-arabinofuranosyl)thymine, Cancer Invest. 3: 115–121.Google Scholar
  136. Savarese, T. M., Cannistra, A. J., Parks, R. E., Jr., Secrist, J. A., III, Shortnacy, A. T., and Montgomery, J. A., 1987. 5’-Deoxy-5’-methylthioadenosine phosphorylase-IV. Biological activity of 2-fluoroadenine-substituted 5’-deoxy-5’-methylthioadenosine analogues, Biochem. Pharmacol. 36: 1881–1893.Google Scholar
  137. Schildkraut, I., Cooper, G. M., and Greer, S., 1975. Selective inhibition of the replication of herpes simplex virus by 5-halogenated analogues of deoxycytidine, Mol. Pharmacol. 11: 153–158.Google Scholar
  138. Schroeder, C., and Jantschak, J., 1980. Inhibitor studies of phage T4 wild-type and mutant DNA polymerase. IV. The substrate analogue 3’-fluorothymidine 5’-triphosphate, Z. Allg. Mikrobiol. 20: 657–662.PubMedCrossRefGoogle Scholar
  139. Schuetz, J. D., Collins, J. M., Wallace, H. J., and Diasio, R. B., 1986. Alteration of the secondary structure of newly synthesized DNA from murine bone marrow cells by 5-fluorouracil, Cancer Res. 46: 119–123.PubMedCrossRefGoogle Scholar
  140. Shealy, Y. F., O’Dell, C. A., Shannon, W. M., and Arnett, G., 1983. Carbocyclic analogues of 5-substituted uracil nucleosides: Synthesis and antiviral properties, J. Med. Chem. 26: 156–161.PubMedCrossRefGoogle Scholar
  141. Shigata, S., Yokota, T., and De Clercq, E., 1985. Therapy of varicella-zoster virus infection--mechanism of action of (E)-5-(2-bromovinyl)-2’-deoxyuridine, in Proceedings of the 1st International TNO Conference on Antiviral Research (A. Billau, E. De Clercq, and H. Schellekens, eds.), Antiviral Research, Suppl. 1, Elsevier Science Publishers, Rotterdam, pp. 35–44.Google Scholar
  142. Shigeura, H. T., Boxer, G. E., Sampson, S. D., and Meloni, M. L., 1965. Metabolism of 2-fluoroadenine by Ehrlich ascites cells, Arch. Biochem. Biophys. 111: 713–719.PubMedCrossRefGoogle Scholar
  143. Sirotnak, F. M., Chello, P. L., Dorick, D. M., and Montgomery, J. A., 1983. Specificity of systems mediating transport of adenosine, 9-ß-D-arabinofuranosyl-2-fluoroadenine, and other purine nucleoside analogues in L1210 cells, Cancer Res. 43: 104–109.PubMedGoogle Scholar
  144. Smith, C. C., Aurelian, L., Reddy, M. P., Miller, P. S., and Ts’o, P. O. P., 1986. Antiviral effect of an oligo(nucleoside methylphosphonate) complementary to the splice junction of herpes simples virus type 1 immediate early pre-mRNAs 4 and 5, Proc. Natl. Acad. Sci. USA 83: 2787–2791.PubMedCrossRefGoogle Scholar
  145. Sowers, L. C., Eritja, R., Kaplan, B. E., Goodman, M. F., and Fazakerley, G. V., 1987. Structural and dynamic properties of a fluorouracil-adenine base pair in DNA studied by proton NMR, J. Biol. Chem. 262: 15436–15442.PubMedGoogle Scholar
  146. Spears, C. P., Shani, J., Shahinian, A. H., Wolf, W., Heidelberger, C., and Danenberg, P. V., 1985. Assay and time course of 5-fluorouracil incorporation into RNA of L1210/0 ascites cells in vivo, Mol. Pharmacol. 27: 302–307.PubMedGoogle Scholar
  147. Spector, S. A., Tyndall, M., and Kelley, E., 1983. Inhibition of human cytomegalovirus by trifluorothymidine, Antimicrob. Agents Chemother. 23: 113–118.PubMedCrossRefGoogle Scholar
  148. Spriggs, D., Robbins, R., Mitchell, T., and Kufe, D., 1986. Incorporation of 9-ß-D-arabinofuranosyl-2-tuoroadenine into HL-60 cellular RNA and DNA, Biochem. Pharmacol. 35: 247–252.PubMedCrossRefGoogle Scholar
  149. Stubbe, J., and Kozarich, J. W., 1980. fluoride, pyrophosphate, and base release from 2’-deoxy-2’-fluoronucleoside 5’-diphosphates by ribonucleoside-diphosphate reductase, J. Biol. Chem. 255: 5511–5513.Google Scholar
  150. Su, T.-L., Watanabe, K. A., Schinazi, R. F., and Fox, J. J., 1986. Nucleosides. 136. Synthesis and antiviral effects of several 1-(2-deoxy-2-fluoro-ß-D-arabinofuranosyl)-5-alkyluracils. Some structure-activity relationships, J. Med. Chem. 29: 151–154.PubMedCrossRefGoogle Scholar
  151. Suzuki, S., Saneyoshi, M., Nakayama, C., Yukihirl, N., and Yoshida, S., 1985. Mechanism of selective inhibition of human cytomegalovirus replication by 1-ß-D-arabinofuranosyl5-fluorouracil, Antimicrob. Agents Chemother. 28: 326–330.PubMedCrossRefGoogle Scholar
  152. Suzuki, S., Misra, H. K., Wiebe, L. I., Knaus, E. E., and Tyrrell, L. J., 1987. A proposed mechanism for the selective inhibition of human cytomegalovirus replication by 1-(2’deoxy-2’-fluoro-ß-D-arabinofuranosyl)-5-fluorouracil, Mol. Pharmacol. 31: 301–306.PubMedGoogle Scholar
  153. Szybalski, W., 1974. X-ray sensitization by halopyrimidines, Cancer Chemother. Rep. 58: 539–557.PubMedGoogle Scholar
  154. Tanaka, M., Kimura, K., and Yoshida, S., 1983. Enhancement of the incorporation of 5-fluorodeoxyuridylate into DNA of HL-60 cells by metabolic modulations, Cancer Res. 43: 5145–5150.PubMedGoogle Scholar
  155. Thelander, L., Larsson, B., Hobbs, J., and Eckstein, F., 1976. Active site of ribonucleoside diphosphate reductase from Escherichia coli. Inactivation of the enzyme by 2’-substituted ribonucleoside diphosphates. J. Biol. Chem. 251: 1398–1405.PubMedGoogle Scholar
  156. Torrence, P. F., 1985. How interferon works, in Biological Response Modifiers ( P. F. Torrence, ed.), Academic Press, Orlando, Florida, pp. 77–105.Google Scholar
  157. Tseng, W.-C., Derse, D., Cheng, Y.-C., Brockman, R. W., and Bennett, L. L., 1981. In vitro biological activity of 9-ß-D-arabinofuranosyl-2-fluoroadenine and the biochemical actions of its triphosphate on DNA polymerases and ribonucleotide reductase from HeLa cells, Mol. Pharmacol. 21: 474–477.Google Scholar
  158. Uesugi, S., Miki, H., Ikehara, M., Iwahashi, H., and Kyogoku, Y., 1979. A linear relationship between electronegativity of 2’-substituents and conformation of adenine nucleosides, Tetrahedron Lett. 42: 4073–4076.CrossRefGoogle Scholar
  159. Uesugi, S., Takatsuka, Y., Ikehara, M., Cheng, D. M., Kan, L. S., and Ts’o, P. O. P., 1981. Synthesis and characterization of the dinucleoside monophosphates containing 2’-fluoro2’-deoxyadenosine, Biochemistry 20: 3056–3062.PubMedCrossRefGoogle Scholar
  160. Visser, D. W., Frisch, D. M., and Huang, B., 1960. Synthesis of 5-chlorodeoxyuridine and a comparative study of 5-halodeoxy uridines in E. coli, Biochem. Pharmacol. 5: 157–164.PubMedCrossRefGoogle Scholar
  161. Waehnert, U., and Langen, P., 1979. Incorporation of 3’-deoxy-3’-fluorothymidylate into DNA in vitro, 19th Hungarian Annual Meeting of Biochemistry, pp. 27–28.Google Scholar
  162. Watanabe, K., Reichman, U., Hirota, K., and Fox, J. J., 1979. Nucleosides. 110. Synthesis and antiherpes virus activity of some 2’-fluoro-2’-deoxyarabinofuranosylpyrimidine nucleosides, J. Med. Chem. 22: 21–24.PubMedCrossRefGoogle Scholar
  163. Watanabe, K. A., Reichman, U., Chu, C. K., Hollenberg, D. H., and Fox, J. J., 1980. Nucleosides. 116. 1-(ß-Xylofuranosyl)-5-fluorocytosines with a leaving group on the 3’-position. Potential double-barreled masked precursors of anticancer nucleosides, J. Med. Chem. 23: 1088–1094.PubMedCrossRefGoogle Scholar
  164. Watanabe, K., Su, T.-L., Klein, R. S., Chu, C. K., Matsude, A., Chun, M. W., Lopez, C., and Fox, J. J., 1983. Nucleosides. 123. Synthesis of antiviral nucleosides: 5-Substituted 1-(2-deoxy-2-halogeno-ß-D-arabinosyl)cytosines and -uracils. Some structure-activity relationships, J. Med. Chem. 26: 152–156.PubMedCrossRefGoogle Scholar
  165. Weckbecker, G., and Keppler, D. 0., 1984. Substrate properties of 5-fluorouridine diphospho sugars detected in hepatoma cells, Biochem. Pharmacol. 33: 2291–2298.PubMedCrossRefGoogle Scholar
  166. Wilkinson, D. S., and Crumley, J., 1977. Metabolism of 5-fluorouracil in sensitized and resistant Novikoff hepatoma cells, J. Biol. Chem. 252: 1051–1056.PubMedGoogle Scholar
  167. Wilkinson, D. S., Tlsty, T. D., and Hanas, R. J., 1975. The inhibition of ribosomal RNA synthesis and maturation in Novikoff hepatoma cells by 5-fluorouridine, Cancer Res. 35: 3014–3020.PubMedGoogle Scholar
  168. Will, C. L., and Dolnick, B. J., 1986. 5-Fluorouracil augmentation of dihydrofolate reductase gene transcripts containing intervening sequences in methotrexate resistant KB cells, Mol. Pharmacol. 29: 643–648.Google Scholar
  169. Wingard, J. R., Stuart, R. K., Saral, R., and Burns, W. H., 1981. Activity of trifluorothymidine against cytomegalovirus, Antimicrob. Agents Chemother. 20: 286–290.PubMedCrossRefGoogle Scholar
  170. Withers, S. G., and Madsen, N. B., 1980. Nucleotide activation of phosphorylase b occurs only when the nucleotide phosphate is in a dianionic form, Biochem. Biophys. Res. Commun. 97: 513–519.PubMedCrossRefGoogle Scholar
  171. Wohlrab, F., Haertle, T., Trichtinger, T., and Guschlbauer, W., 1978. 2’-Deoxy-2’fluorouridine-5’-phosphate: An alternate substrate for thymidylate synthetase from Escherichia coli K12, Nucleic Acids Res. 5: 4753–4759.Google Scholar
  172. Wohlrab, F., Jamieson, A. T., Hay, J., Mengel, R., and Guschlbauer, W., 1985. The effect of 2’-fluoro-2’-deoxycytidine on herpes virus growth, Biochim. Biophys. Acta 824: 233–242.PubMedCrossRefGoogle Scholar
  173. Young, C. W., Schneider, R., Leyland-Jones, B., Armstrong, D., Tan, C., Lopez, C., Watanabe, K. A., Fox, J. J., and Philips, F. S., 1983. Phase I evaluation of 2’-fluoro5-iodo-ß-D-arabinofuranosylcytosine in immunosuppressed patients with herpes virus infection, Cancer Treat. Rep. 43: 5006–5009.Google Scholar
  174. Yung, N. C., Burchenal, J. H., Fecher, R., Duschinsky, R., and Fox, J. J., 1961. Nucleosides. XI. Synthesis of 1-ß-o-arabinofuranosyl-5-fluorouracil and related nucleosides. J. Am. Chem. Soc. 83: 4060–4065.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations