Skip to main content

Biochemistry of Halogenated Nucleosides and Nucleotides

  • Chapter
Biochemistry of Halogenated Organic Compounds

Part of the book series: Biochemistry of the Elements ((BOTE,volume 9A+B))

Abstract

The classic biochemical studies of Peters and co-workers, demonstrating the biosynthesis of the extremely toxic fluorocitrate from fluoroacetate, provided the initial example of the profound biological consequences of lethal synthesis (Chapter 1). The syntheses of fluorinated steroids by Fried and co-workers, based in part on the precedent provided by the altered biological activity of fluorocitrate, was a second development of historical proportions (Chapter 3). Of comparable scientific impact was the synthesis of 5-fluorouracil (fl5ura), 5-fluoroorotic acid (fl5oro), and 5-fluorocytosine (fl5cyt) (Fig. 5-1) by Heidelberger et al. (1957).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajmera, S., Bapat, A. R., Danenberg, K., and Danenberg, P. V., 1984. Synthesis and biological activity of 5-fluoro-2’,3’-dideoxy-3’-fluorouridine and its 5’-phosphate, J. Med. Chem. 27: 11–14.

    Article  PubMed  CAS  Google Scholar 

  • Ajmera, S., Bapat, A. R., Stephanian, E., and Danenberg, P. V., 1988. Synthesis and interaction with uridine phosphorylase of 5’-deoxy-4’,5-difluorouridine, a new prodrug of 5-fluorouracil, J. Med. Chem. 31: 1094–1098.

    Article  PubMed  CAS  Google Scholar 

  • Aoyama, H, Sarih-Cottin, L., Tarrago-Litvak, L., Kakiuchi, N., Litvak, S., and Guschlbauer, W., 1985. 2’-Fluoro-2’-deoxypolynucleosides as templates and inhibitors for RNA- and DNA-dependent DNA polymerases, Biochim. Biophys. Acta 824: 225–232.

    Google Scholar 

  • Armstrong, R. D., Lewis, M., Stern, S. G., and Cadman, E. C., 1986a. Acute effect of 5-fluorouracil on cytoplasmic and nuclear dihydrofolate reductase messenger RNA metabolism, J. Biol. Chem. 261: 7366–7371.

    PubMed  CAS  Google Scholar 

  • Armstrong, R. D., Takimoto, C. H., and Cadman, E. D., 1986b. Fluoropyrimidine-mediated changes in small nuclear RNA, J. Biol. Chem. 261: 21–24.

    PubMed  CAS  Google Scholar 

  • Ashley, G. W., and Stubbe, J., 1985. Current ideas on the chemical mechanism of ribonucleotide reductases, Pharmacol. Ther. 30: 301–329.

    Article  PubMed  CAS  Google Scholar 

  • Avramis, V. I., and Plunkett, W., 1983. 2-Fluoro-ATP: A toxic metabolite of 9-ß-o-arabinosyl2-fluoroadenine, Biochem. Biophys. Res. Commun. 113: 35–43.

    Google Scholar 

  • Barrueco, J. R., Jacobsen, D. M., Chang, C.-H., Brockman, R. W., and Sirotnak, F. M., 1987. Proposed mechanism of therapeutic selectivity for 9-ß-D-arabinofuranosyl-2-fluoroadenine against murine leukemia based upon lower capacities for transport and phosphorylation in poliferative intestinal epithelium compared to tumor cells, Cancer Res. 47: 700–706.

    PubMed  CAS  Google Scholar 

  • Beabealashvilli, R. S., Scamrov, A. V., Kutateladze, T. V., Mazo, A. M., Krayevsky, A. A., and Kukhanova, M. K., 1986. Nucleoside 5’-triphosphates modified at sugar residues as substrates for calf thymus terminal deoxynucleotidyl transferase and for AMV reverse transcriptase, Biochim. Biophys. Acta 868: 136–144.

    Article  PubMed  CAS  Google Scholar 

  • Beltz, R. E., and Visser, D. W., 1955. Growth inhibition of Escherichia coli by new thymidine analogues, J. Am. Chem. Soc. 77: 736–738.

    Article  CAS  Google Scholar 

  • Benson, A. B., III, Trump, D. L., Cummings, K. B., and Fischer, P. H., 1985. Modulation of 5-iodo-2’-deoxyuridine metabolism and cytotoxicity in human bladder cancer cells by fluoropyrimidines, Biochem. Pharmacol. 34: 3925–3931.

    Article  PubMed  CAS  Google Scholar 

  • Benz, C., and Cadman, E., 1981. Modulation of 5-fluorouracil metabolism and cytotoxicity by antimetabolite pretreatment in human colorectal adenocarcinoma HCT-8, Cancer Res. 41: 994–999.

    PubMed  CAS  Google Scholar 

  • Bergstrom, D., and Swartling, D. J., 1988. Fluorine substituted analogues of nucleic acid components, in Fluorine-Containing Molecules (J. F. Liebman, A. Greenberg, and W. R. Dolbier, Jr., eds.), VCH Publishers, New York, pp. 259–308.

    Google Scholar 

  • Bergstrom, D., Romo, E., and Shum, P., 1987. Fluorine substituted analogues of nucleosides and nucleotides, Nucleosides Nucleotides 6: 53–63.

    Article  CAS  Google Scholar 

  • Biggadike, K., Borthwick, A. D., Evans, D., Exall, A. M., Kirk, B. E., Roberts, S. M., Stephenson, L., Youds, P., Slawin, M. Z., and Williams, D. J., 1987. Synthesis of fluorinated carbocyclic nucleosides: Preparation of carbocyclic 1-(2’-deoxy-6’-fluororibofuranosyl)-5-iodouracils, J. Chem. Soc., Chem. Commun. 1987: 255–256.

    Google Scholar 

  • Biggers, W. J., Barnea, E. R., and Sanyal, M. K., 1987. Anomalous neural differentiation induced by 5-bromo-2’-deoxyuridine during organogenesis in the rat, Teratology 35: 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, D. K., and Hanes, S. D., 1982. Increased level of prolactin gene sequences in bromodeoxyuridine treated GH cells, Nucleic Acids Res. 10: 3995–4008.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, D. K., Abdullah, K. T., and Brennessel, B. A., 1979. On the mechanism of 5-bromodeoxyuridine induction of prolactin synthesis in rat pituitary tumor cells, J. Cell Biol. 81: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, D. K., Hartigen, J. A., and Pichler, M. H., 1984. Identification of DNA sequence responsible for 5-bromodeoxyuridine-induced gene amplification, Science 225: 941–943.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, G. M., and Kent, D. E., 1986. Synthesis of a-and y-fluoroalkylphosphonates, J. Chem. Soc., Perk. in Trans. 1 1986:913–917.

    Google Scholar 

  • Blackburn, G. M., Perree, T. D., Rashid, A., Bisbal, C., and Lebleu, B., 1986. Isosteric and isopolar analogues of nucleotides, Chem. Scr. 26: 21–24.

    CAS  Google Scholar 

  • Boothman, D. A., Briggle, T. V., and Greer, S., 1985. Metabolic channeling of fluoro-2’deoxycytidine utilizing inhibitors of its deamination in cell culture, Mol. Pharmacol. 27: 584–594.

    PubMed  CAS  Google Scholar 

  • Boothman, D. A., Briggle, T. V., and Greer, S., 1987a. Tumor-selective metabolism of 5-fluoro-2’-deoxycytidine coadministered with tetrahydrouridine compared to 5-fluorouracil in mice bearing Lewis lung carcinoma, Cancer Res. 47: 2354–2362.

    PubMed  CAS  Google Scholar 

  • Boothman, D. A., Briggle, T. V., and Greer, S., 1987b. Protective, tumor-selective dual pathway activation of 5-fluoro-2’-deoxycytidine provided by tetrahydrouridine in mice bearing mammary adenocarcinoma-755, Cancer Res. 47: 2344–2353.

    PubMed  CAS  Google Scholar 

  • Boothman, D A, Greer, S., and Pardee, A. B., 1987c. Potentiation of pyrimidine radiosensitizers in human carcinoma cells by ß-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho-[1,2-b]pyran-5,6-dione), a novel DNA repair inhibitor, Cancer Res. 47: 5361–5366.

    PubMed  CAS  Google Scholar 

  • Brockman, R. W., Schabel, F. M., Jr., and Montgomery, J. A., 1977. Biological activity of 9-ß-D-arabinofuranosyl-2-fluoroadenine, a metabolically stable analogue of 9-ß-Darabinofuranosyladenine, Biochem. Pharmacol. 26: 2193–2196.

    Article  PubMed  CAS  Google Scholar 

  • Bubley, G. J., Balzarini, J., Crumpacker, C. S., De Clercq, E., and Schnipper, L. E., 1987. The effect of (E)-5-(2-bromovinyl)-2’-deoxyuridine on DNA repair and mutagenesis of herpes simplex virus type 1, Virology 161: 242–244.

    Article  PubMed  CAS  Google Scholar 

  • Caradonna, S. J., and Cheng, Y.-C., 1980. The role of deoxyuridine triphosphate nucleotidohydrolase, uracil-DNA glycosylase, and DNA polymerase a in the metabolism of FUdR in human tumor cells, Mol. Pharmacol. 18: 513–520.

    PubMed  CAS  Google Scholar 

  • Carrico, C. K., and Glazer, R. I., 1979. Augmentation by thymidine of the incorporation and distribution of 5-fluorouracil in ribosomal RNA, Biochem. Biophys. Res. Commun. 87: 664–670.

    Article  PubMed  CAS  Google Scholar 

  • Chandra, P., Demirhan, I., and De Clercq, E., 1981. A study of antitemplate inhibition of mammalian, bacterial, and viral DNA polymerases by 2- and 2’-substituted derivatives of polyadenylic acid, Cancer Leu. 12: 181–193.

    Article  CAS  Google Scholar 

  • Chaudhuri, N. K., Montag, B. J., and Heidelberger, C., 1958. Studies on fluorinated pyrimidines III: The metabolism of 5-fluorouracil-2–04 and 5-fluoroorotic-2-C14 acid in vivo, Cancer Res. 18: 318–328.

    PubMed  CAS  Google Scholar 

  • Cheng, Y.-C., and Nakayama, K., 1983. Effects of 5-fluoro-2’-deoxyuridine on DNA metabolism in HeLa cells, Mol. Pharmacol. 23: 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y.-C., Dutschman, G., Fox, J. J., Watanabe, K. A., and Machida, H., 1981. Differential activity of potential antiviral nucleoside analogues on herpes simplex virus-induced and human cellular thymidine kinases, Antimicrob. Agents Chemother. 20: 420–423.

    Article  PubMed  CAS  Google Scholar 

  • Chidgeavadze, Z. G., Scamrov, A. V., Beabealashvilli, R. Sh., Kvasyuk, E. I., Zaitseva, G. V., Mikhailopulo, I. A., Kowollik, G., and Langen, P., 1985. 3’-Fluoro-2’,3’-dideoxyribonucleoside 5’-triphosphate: Terminators of DNA synthesis, FEBS Lett. 183: 275–278.

    Google Scholar 

  • Chidgeavadze, Z. G., Beabealashvilli, R. Sh., Krayevsky, A. A., and Kukhanova, M. K., 1986. Nucleoside 5’-triphosphates with modified sugars as substrates for DNA polymerases, Biochim. Biophys. Acta 868: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J. L., Berger, S. H., Mittelman, A., and Berger, F. G., 1987. Thymidylate synthase gene amplification in a colon tumor resistant to fluoropyrimidine chemotherapy, Cancer Treat. Rep. 71: 261–265.

    PubMed  CAS  Google Scholar 

  • Coderre, J. A., Santi, D. V., Matsuda, A., Watanabe, K. A., and Fox, J. J., 1983. Mechanism of action of 2’,5-difluoro-l-arabinosyluracil, J. Med. Chem. 26: 1149–1152.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S. S., Flaks, J. G., Barner, H. D., Loeb, M. R., and Lichtenstein, J., 1958. The mode of action of 5-fluorouracil and its derivatives, Proc. Natl. Acad. Sci. USA 44: 1004–1012.

    Article  PubMed  CAS  Google Scholar 

  • Colacino, J. M., and Lopez, C., 1983. Efficacy and selectivity of some nucleoside analogues as anti-human cytomegalovirus agents, Antimicrob. Agents Chemother. 24: 505–508.

    Article  PubMed  CAS  Google Scholar 

  • Cory, J. G., Breland, J. C., and Carter, G. L., 1979. Effect of 5-fluorouracil on RNA metabolism in Novikoff hepatoma cells, Cancer Res. 39: 4905–4913.

    PubMed  CAS  Google Scholar 

  • Danenberg, P. V., 1977. Thymidylate synthetase-a target enzyme in cancer chemotherapy, Biochim. Biophys. Acta 473: 73–92.

    PubMed  CAS  Google Scholar 

  • Danenberg, P. V., Heidelberger, C., Mulkins, M. A., and Peterson, A. R., 1981. The incorporation of 5-fluoro-2’-deoxyuridine into DNA of mammalian tumor cells, Biochem. Biophys. Res. Commun. 102: 654–659.

    Article  PubMed  CAS  Google Scholar 

  • Darnell, J., Lodish, H., and Baltimore, D., 1986. Molecular Cell Biology, Scientific American Books, distributed by W. H. Freeman and Company, New York, pp. 316–321.

    Google Scholar 

  • De Clercq, E., 1984. Biochemical aspects of selective antiherpes activity of nucleoside analogues, Biochem. Pharmacol. 33: 2159–2169.

    Article  PubMed  Google Scholar 

  • De Clercq, E., 1985a. Recent trends in antiviral chemotherapy, in Proceedings of the 1st International TNO Conference on Antiviral Research, Antiviral Research, Suppl. I ( A. Billiau, E. De Clercq, and H. Schellekens, eds.), Elsevier Science Publishers, Rotterdam, pp. 11–19.

    Google Scholar 

  • De Clercq, E., 1985b. Synthetic pyrimidine nucleoside analogues, in Approaches to Antiviral Agents ( M. E. Hamden, ed.), VCH Publishers, New York, pp. 57–99.

    Google Scholar 

  • De Clercq, E., and Walker, R. T., 1984. Synthesis and antiviral properties of 5-vinyl pyrimidine nucleoside analogues, Pharmacol. Ther. 26: 1–44.

    Article  PubMed  Google Scholar 

  • De Clercq, E., Descamps, J., De Somer, P., Barr, P. J., Jones, A. S., and Walker, R. T., 1979. (E)-5-(2-Bromovinyl)-2’-deoxyuridine: A potent and selective antiherpes agent, Proc. Natl. Acad. Sci. USA 76: 2947–2951.

    Google Scholar 

  • De Clercq, E., Stollar, B. D., Hobbs, J., Fukui, T., Kakiuchi, N., and Ikehara, M., 1980. Interferon induction by two 2’-modified double-helical RNAs, poly(2’-fluoro-2’-deoxyinosinic acid)poly(cytidylic acid) and poly(2’-chloro-2’-deoxyinosinic acid)poly(cytidylic acid), Eur. J. Biochem. 107: 279–288.

    Article  PubMed  Google Scholar 

  • Dexter, D. L., Woberg, W. H., Ansfield, F. J., Helson, L., and Heidelberger, C., 1972. The clinical pharmacology of 5-tritluoromethyl-2’-deoxyuridine, Cancer Res. 32: 247–253.

    PubMed  CAS  Google Scholar 

  • Djordjevic, B., and Szybalski, W., 1960. Genetics of human cell lines. III. Incorporation of 5-bromo-and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity, J. Exp. Med. 112: 509–531.

    Article  PubMed  CAS  Google Scholar 

  • Dolbeare, F., Gratzner, H., Pallavicini, M. G., and Gray, J. W., 1983. Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine, Proc. Natl. Acad. Sci. USA 80: 5573–5577.

    Article  PubMed  CAS  Google Scholar 

  • Dollinger, M. R., Burchenal, J. H., Kries, W., and Fox, J. J., 1967. Analogues of 1-ß-oarabinofuranosylcytosine. Studies on mechanisms of action in Burkitt’s cell culture and mouse leukemia, and in vitro deamination studies, Biochem. Pharmacol. 16: 689–706.

    Article  PubMed  CAS  Google Scholar 

  • Dolnick, B. J., and Pink, J. J., 1983. 5-Fluorouracil modulation of dihydrofolate reductase RNA levels in methotrexate-resistant KB cells, J. Biol. Chem. 258: 13299–13306.

    Google Scholar 

  • Dolnick, B. J., and Pink, J. J., 1985. Effects of 5-fluorouracil on dihydrofolate reductase and dihydrofolate reductase mRNA from methotrexate-resistant KB cells, J. Biol. Chem. 260: 3006–3014.

    PubMed  CAS  Google Scholar 

  • Douglas, K. T., 1987. The thymidylate synthesis cycle and anticancer drugs, Med. Res. Rev. 7: 441–475.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, R. J., and Grosch, J. C., 1974. The inhibition of avian myeloblastosis virus deoxyribonucleic acid polymerase by synthetic polynucleotides, Biochemistry 13: 1987–1993.

    Article  PubMed  CAS  Google Scholar 

  • Fanucchi, M. P., Leyland-Jones, B., Young, C. W., Burchenal, J. H., Watanabe, K. A., and Fox, J. J., 1985. Phase I trial of 1-(2’-deoxy-2’-fluoro-1-ß-o-arabinofuranosyl)5-methyluracil (FMAU), Cancer Treat. Rep. 69: 55–59.

    PubMed  CAS  Google Scholar 

  • Fernandez, M. P., Young, M. F., and Sobel, M. E., 1985. Methylation of type II and type I collagen genes in differentiated and dedifferentiated chondrocytes, J. BioL Chem. 260: 2347–2378.

    Google Scholar 

  • Filler, R., and Naqvi, S. M., 1982. Fluorine in biomedicinal chemistry. An overview of recent advances and selected topics, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and Y. Kobayashi, eds.), Kodansha Ltd., Tokyo; Elsevier Biomedical Press, New York, pp. 1–16.

    Google Scholar 

  • Fox, J. J., Falco, E. A., Wempen, I., Pomeroy, D., Dowling, M. D., and Burchenal, J. H., 1972. Oral and parenteral activity of 2,2’-anhydro-1-ß-o-arabinofuranosyl-5-fluorocytosine against both intraperitoneally and intracerebrally inoculated mouse leukemia, Cancer Res. 32: 2269–2272.

    PubMed  CAS  Google Scholar 

  • Fox, J. J., Watanabe, K. A., Chou, T. C., Schinazi, R. F., Soike, K. F., Fourel, I., Gantz, G., and Trepo, C., 1988. Antiviral activities of 2’-fluorinated arabinosylpyrimidine nucleosides, in Fluorinated Carbohydrates, Chemical and Biochemical Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 176–190.

    Google Scholar 

  • Freese, E., 1959. The specific mutagenic effect of base analogues on phage T4, J. Mol. Biol. 1: 87–105.

    Article  CAS  Google Scholar 

  • Fukui, T., and De Clercq, E., 1982. Inhibition of murine leukemia virus reverse transcriptase by 2-halogenated polyadenylic acids, Biochem. J. 203: 755–760.

    PubMed  CAS  Google Scholar 

  • Fukui, T., De Clercq, E., Kakiuchi, N., and Ikehara, M., 1982a. Template activity of poly(2’-fluoro-2’-deoxyinosinic acid) for murine leukemia virus reverse transcriptase, Cancer Lett. 16: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, T., Kakiuchi, N., and Ikehara, M., 1982b. Protein synthesis using poly(2’-halogeno2’-deoxyadenylic acids) as messenger, Biochim. Biophys. Acta 697: 174–177.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, C., Wataya, Y., and Santi, D. V., 1979. Thymidylate synthetase. Catalysis of dehalogenation of 5-bromo-and 5-iodo-2’-deoxyuridylate, Biochemistry 18: 2798–2804.

    Article  PubMed  CAS  Google Scholar 

  • Glazer, G. I., and Hartman, K. D., 1983. In vivo translation of messenger RNA following exposure of human colon carcinoma cells in culture to 5-fluorouracil and 5-fluorouridine, Mol. Pharmacol. 23: 540–546.

    CAS  Google Scholar 

  • Glazer, R. I., and Lloyd, L. S., 1982. Association of cell lethality with incorporation of 5-fluorouracil and 5-fluorouridine into nuclear RNA in human colon carcinoma cells in culture, Mol. Pharmacol. 21: 468–473.

    PubMed  CAS  Google Scholar 

  • Glazer, R. I., and Peale, A. L., 1979. The effect of 5-fluorouracil on the synthesis of nuclear RNA in L1210 cells in vitro, Mol. Pharmacol. 16: 270–277.

    PubMed  CAS  Google Scholar 

  • Goulian, M., Bliele, B., and Tseng, Y. B., 1980. Methotrexate-induced misincorporation of uracil into DNA, Proc. Natl. Acad. Sci. USA 77: 1956–1960.

    Article  PubMed  CAS  Google Scholar 

  • Goz, B., 1978. The effects of incorporation of 5-halogenated deoxyuridines into the DNA of eukaryotic cells, Pharmacol. Rev. 29: 249–271.

    Google Scholar 

  • Gratzner, H. G., 1982. Monoclonal antibody to 5-bromo-and 5-iodouridine: A new reagent for detection of DNA replication, Science 218: 474–475.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J. W., and Maya11, B. H. (eds.), 1985. Monoclonal antibodies against bromodeoxyuridine, Cytometry 6:499–673.

    Google Scholar 

  • Griengl, H., Wanek, E., Schwarz, W., Streicher, W., Rosenwirth, B., and De Clercq, E., 1987. 2’-Fluorinated arabinonucleosides of 5-(2-haloalkyl)uracil: Synthesis and antiviral activity, J. Med. Chem. 30: 1199–1204.

    Google Scholar 

  • Harnden, M. R. (ed.), 1985. Approaches to Antiviral Agents, VCH Publishers, New York.

    Google Scholar 

  • Harris, G., Ator, M., and Stubbe, J., 1984. Mechanism of inactivation of Escherichia coli and Lactobacillus leichmannii ribonucleotide reductases by 2’-chloro-2’-deoxynucleotides: Evidence for generation of 2-methylene-3-(2H)-furanone, Biochemistry 23: 5214–5225.

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger, C., 1975a. Fluorinated pyrimidines and their nucleosides, in Antineoplastic and Immunosuppressive Agents, Part II, Handbood of Experimental Pharmacology, Vol. XXXVIII/2 ( A. C. Sartorelli and D. G. Johns, eds.), Springer-Verlag, New York, pp. 193–231.

    Google Scholar 

  • Heidelberger, C., 1975b. On the molecular mechanisms of the antiviral activity of trifluorothymidine, Ann. N.Y. Acad. Sci. 255: 317: 325.

    Google Scholar 

  • Heidelberger, C., and King, D. H., 1979. Trifluorothymidine, Pharmacol. Ther. 6: 427–442.

    Article  CAS  Google Scholar 

  • Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R. J., Pleven, E., and Schemer, J., 1957. Fluorinated pyrimidines, a new class of tumor-inhibitory compounds, Nature 179: 663–666.

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger, C., Parsons, D., and Remy, D. C., 1962. Synthesis of trifluoromethyluracil and 5-trifluoromethyluracil-2’-deoxyuridine, J. Am. Chem. Soc. 84: 3597–3598.

    Article  CAS  Google Scholar 

  • Heidelberger, C., Danenberg, P., and Moran, R. G., 1983. Fluorinated pyrimidines and their nucleosides, Ada Enzymol. 54: 58–119.

    CAS  Google Scholar 

  • Houghton, J. A., Weiss, K. D., Williams, L G, Torrance, P. M., and Houghton, P. J., 1986. Relationship between 5-fluoro-2’-deoxyuridylate, 2’-deoxyuridylate, and thymidylate synthase activity subsequent to 5-fluorouracil administration, in xenografts of human colon adenocarcinomas, Biochem. Pharmacol. 35: 1351–1358.

    Article  PubMed  CAS  Google Scholar 

  • Huang, P., and Plunkett, W., 1987. Phosphorolytic cleavage of 2-fluoroadenine from 9-ß-Darabinofuranosyl-2-fluoroadenine by Escherichia coli. A pathway for 2-fluoro-ATP production. Biochem. Pharmacol. 36: 2945–2950.

    Article  PubMed  CAS  Google Scholar 

  • Hutton, J. J., Von Hoff, D. D., Kuhn, J., Philips, J., Hersh, M., and Clark, G., 1984. Phase I clinical investigation of 9-ß-o-arabinofuranosyl-2-fluoroadenine-5’-phosphate (NSC 312887), a new purine antimetabolite, Cancer Res. 44: 4183–4186.

    PubMed  CAS  Google Scholar 

  • Ingraham, H. A., Tseng, B. Y., and Goulian, M., 1982. Nucleotide levels and incorporation of 5-fluorouracil and uracil into DNA cells treated with 5-fluorodeoxyuridine, Mol. Pharmacol. 21: 211–216.

    PubMed  CAS  Google Scholar 

  • Jacobson, K. A., 1988. Chemical approaches to the definition of adenosine receptors, in Adenosine Receptors ( D. M. F. Cooper and C. Londos, eds.), Alan R. Liss, New York, pp. 1–26.

    Google Scholar 

  • Kassis, A. I., Sastry, K. S., and Adelstein, S. J., 1987. Kinetics of uptake, retention, and radiotoxicity of 125IUdR in mammalian cells: Implications of localized energy deposition by Auger processes, Radial. Res. 109: 78–89.

    Article  CAS  Google Scholar 

  • Kato, H., 1974. Spontaneous sister chromatid exchanges detected by a BUdR-labeling method, Nature 251: 70–72.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, E. R., 1984. Replication of DNA containing 5-bromouracil can be mutagenic in Syrian hamster cells, Mol. Cell. Biol. 4: 2449–2454.

    PubMed  CAS  Google Scholar 

  • Kaufman, E. R., 1987. Uncoupling of the induction of mutations and sister-chromatid exchanges by the replication of 5-bromouracil-substituted DNA, Mutat. Res. 176: 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, E. R., and Davidson, R. L., 1978. Bromodeoxyuridine mutagenesis in mammalian cells: Mutagenesis is independent of the amount of bromouracil in DNA, Proc. Natl. Acad. Sci. USA 75: 4982–4986.

    Article  PubMed  CAS  Google Scholar 

  • Kaysen, J., Spriggs, D., and Kufe, D., 1986. Incorporation of 5-fluorodeoxycytidine and metabolites into nucleic acids of human MCF-7 breast carcinoma cells, Cancer Res. 46: 4534–4538.

    PubMed  CAS  Google Scholar 

  • Kessel, D., Hall, T. C., and Wodinsky, I., 1966. Nucleotide formation as a determinant of 5-fluorouracil response in mouse leukemia, Science 154: 911–913.

    Article  PubMed  CAS  Google Scholar 

  • Keyomarsi, K., and Moran, R. G., 1986. Folinic acid augmentation of the effects of fluoropyrimidines on murine and human leukemic cells, Cancer Res. 46: 5229–5235.

    PubMed  CAS  Google Scholar 

  • Kinsella, T. J., Mitchell, J. B., Russo, A., Morstyn, G., and Glatstein, E., 1984. The use of halogenated thymidine analogues as clinical radiosensitizers: Rationale, current status, and future prospects: Non-hypoxic cell sensitizers, Int. J. Radial. Oncol. Biol. Phys. 10: 1399–1406.

    Article  CAS  Google Scholar 

  • Kremer, A. B., Mikita, T., and Beardsley, G. P., 1987. Chemical consequences of incorporation of 5-fluorouracil into DNA as studied by NMR, Biochemistry 26: 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Kufe, D. W., Major, P. P., Egan, E. M., and Loh, E., 1981. 5-Fluoro-2’-deoxyuridine incorporation in L1210 DNA, J. Biol. Chem. 256: 8885–8888.

    Google Scholar 

  • Langenbach, R. J., Dannenberg, P. V., and Heidelberger, C., 1972. Thymidylate synthetase: Mechanism of inhibition by 5-fluoro-2’-deoxyuridylate, Biochem. Biophys. Res. Commun. 48: 1565–1571.

    Article  PubMed  CAS  Google Scholar 

  • Latt, S. A., 1973. Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes, Proc. Natl. Acad. Sci. USA 70: 3395–3399.

    Article  PubMed  CAS  Google Scholar 

  • Latt, S. A., 1974. Sister chromatid exchanges, indices of human chromosome damage and repair: Detection by fluorescence and induction by mitomycin C, Proc. Natl. Acad. Sci. USA 71: 3162–3166.

    Article  PubMed  CAS  Google Scholar 

  • Lin, T.-S., Guo, J.-I., Schinazi, R. F., Chu, C. K., Xiang, J.-N., and Prusoff, W. H., 1988. Synthesis and antiviral activity of various 3’-azido analogues of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1, HTLV-III/LAV), J. Med. Chem. 31: 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Lonn, U., and Lonn, S., 1986. DNA lesions in human neoplastic cells and cytotoxicity of 5-fluoropyrimidines, Cancer Res. 46: 3866–3870.

    PubMed  CAS  Google Scholar 

  • Mar, E.-C., Patel, P. C., Cheng, Y.-C., Fox, J. J., Watanabe, K. A., and Huang, E.-S., 1984. Effects of certain nucleoside analogues on human cytomegalovirus replication in vitro, J. Gen. Virol 65: 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Mar, E.-C., Chiou, J.-F., Cheng, Y.-C., and Huang, E.-S., 1985. Human cytomegalovirusinduced DNA polymerase and its interaction with the triphosphates of 1-(2’-deoxy2’-fluoro-ß-o-arabinofuranosyl)-5-methyluracil, -5-iodocytosine, and -5-methylcytosine, J. Virol. 56: 846–851.

    PubMed  CAS  Google Scholar 

  • Marquez, V. E., Tseng, C. K.-H., Kelley, J. A., Mitsuya, H., Broder, S., Roth, J. S., and Driscoll, J. S., 1987. 2’,3’-Dideoxy-2’-fluoro-ara-A. An acid stable purine nucleoside active against human immunodeficiency virus (HIV), Biochem. Pharmacol. 36: 2719–2722.

    Google Scholar 

  • Mekras, J. A., Boothman, D. A., Perez, L. M., and Greer, S., 1984. Use of 5-fluorodeoxycytidine and tetrahydrouridine to exploit high levels of deoxycytidylate deaminase in tumors to achieve DNA- and target-directed therapies, Cancer Res. 44: 2551–2560.

    PubMed  CAS  Google Scholar 

  • Mekras, J. A., Boothman, D. A., and Greer, S. B., 1985. Use of 5-trifluoromethyldeoxycytidine and tetrahydrouridine to circumvent catabolism and exploit high levels of cytidine deaminase in tumors to achieve DNA- and target-directed therapies, Cancer Res. 45: 5270–5280.

    PubMed  CAS  Google Scholar 

  • Mini, E., Moroson, B. A., and Bertino, J. R., 1987. Cytotoxicity of floxuridine and 5-fluorouracil in human T-lymphoblast leukemia cells: Enhancement by leucovorin, Cancer Treat. Rep. 71: 381–389.

    PubMed  CAS  Google Scholar 

  • Mitchell, J. B., Russo, A., Kinsella, T. J., and Glatstein, E., 1986. The use of nonhypoxic cell sensitizers in radiobiology and radiotherapy, Int. J. Radiat. Oncol. Biol. Phys. 12: 1513–1518.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, J. A., 1982. Has the well gone dry? The first Cain memorial award lecture, Cancer Res. 42: 3911–3917.

    PubMed  CAS  Google Scholar 

  • Montgomery, J. A., and Hewson, K., 1957. Synthesis of potential anticancer agents X. 2-Fluoroadenosine, J. Am. Chem. Soc. 79: 45–59.

    Google Scholar 

  • Myers, C. E., 1981. The pharmacology of the fluoropyrimidines, Pharmacol. Rev. 33: 1–15.

    PubMed  CAS  Google Scholar 

  • Nakayama, C., Wataya, Y., and Santi, D. V., 1981. Interaction of 1-(5-phospho-ß-Darabinofuranosyl)-5-substituted-uracils with thymidylate synthetase: Mechanism-based inhibition by 1-(5-phospho-ß-n-arabinosyl)-5-fluorouracil, J. Med. Chem. 24: 1161–1165.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E. M., and Santi, D. V., 1982. Metabolism and mechanism of action of 5-fluorodeoxycytidine, Proc. Natl. Acad. Sci. USA 79: 6419–6423.

    Article  PubMed  CAS  Google Scholar 

  • Osterman, D. G., DePillis, G. D., Wu, J. C., Matsuda, A., and Santi, D. V., 1988. 5-Fluorocytosine in DNA is a mechanism-based inhibitor of Hhal methylase, Biochemistry 27: 5204–5210.

    Google Scholar 

  • Paison, S. G., Hartigan, J. A., Kumar, V, and Biswas, D. K., 1987. DNA sequence responsible for the amplification of adjacent genes, DNA 6: 419–428.

    Article  Google Scholar 

  • Parker, W. B., Kennedy, K. A., and Klubes, P., 1987. Dissociation of 5-fluorouracil-induced DNA fragmentation from either its incorporation into DNA or its cytotoxicity in murine T-lymphoma (S-49) cells, Cancer Res. 47: 979–982.

    PubMed  CAS  Google Scholar 

  • Perez, L. M., and Greer, S., 1986. Sensitization to X ray by 5-chloro-2’-deoxycytidine co-administered with tetrahydrouridine in several mammalian cell lines and studies of 2’-chloro derivatives, Int. J. Radiat. Oncol. Biol. Phys. 12: 1523–1527.

    Article  PubMed  CAS  Google Scholar 

  • Prusoff, W. H., 1959. Synthesis and biological activity of iododeoxyuridine, an analogue of thymidine, Biochem. Biophys. Acta 32: 295–296.

    Article  PubMed  CAS  Google Scholar 

  • Prusoff, W. H., and Goz, B., 1975. Halogenated pyrimidine deoxyribonucleosides, in Antineoplastic and Immunosuppressive Agents, Part II, Handbook of Experimental Pharmacology, Vol. XXXVIII/2 ( A. C. Sartorelli and D. G. Johns, eds.), Springer-Verlag, New York, pp. 272–347.

    Google Scholar 

  • Prusoff, W. H., Chen, M. S., Fischer, P. H., Lin, T.-S., Shiau, G. T., Schinaze, R. F., and Walker, J., 1979. Antiviral iodinated pyrimidine deoxyribonucleosides: 5-Iodo-2’deoxyuridine; 5-iodo-2’-deoxycytidine; 5-iodo-5’-amino-2’,5’-dideoxyuridine, Pharmacol. Ther. 7: 1–34.

    Article  PubMed  CAS  Google Scholar 

  • Prusoff, W. H., Mancini, W. R., Lin, T.-S., Lee, J.-J., Siegel, S. A., and Otto, M. J., 1984. Physical and biological consequences of incorporation of antiviral agents into virus DNA, Antiviral Res. 4: 303–315.

    Article  PubMed  CAS  Google Scholar 

  • Prusoff, W. H., Zucker, M., Mancini, W. R., Otto, M. J., Lin, T.-S., and Lee, J.-J., 1985. Basic biochemical and pharmacological aspects of antiviral agents, in Proceedings of the 1st International TNO Conference on Antiviral Research (A. Billau, E. De Clercq, and H. Schellekens, eds.), Antiviral Research, Suppl. 1, Elsevier Science Publishers, Rotterdam, pp. 1–10.

    Google Scholar 

  • Rosenwirth, B., Griengl, H., Wanek, E., and De Clercq, E., 1985. 5-(2-Chloroethynyl)2’-deoxyuridine: A potent and selective inhibitor of herpes viruses, in Proceedings of the 1st International TNO Conference on Antiviral Research (A. Billau, E. De Clercq, and H. Schellekens, eds.), Antiviral Research, Suppl. 1, Elsevier Science Publishers, Rotterdam, pp. 21–28.

    Google Scholar 

  • Rossler, K., Meyers, G.-J., and Stocklin, G., 1977. Labeling and animal distribution studies of 5-astatouracil and 5-astatodeoxyuridine (211 At). J. Labeled Compd. Radiopharm. 13: 271.

    Google Scholar 

  • Russell, K. J., Rice, G. C., and Brown, J. M., 1986. In vitro and in vivo radiation sensitization by the halogenated pyrimidine 5-chloro-2’-deoxycytidine, Cancer Res. 46: 2883–2887.

    CAS  Google Scholar 

  • Ruth, J. L., and Cheng, Y.-C., 1981. Nucleoside analogues with clinical potential in antivirus chemotherapy: The effect of several thymidine and 2’-deoxycytidine analogue 5’-triphosphates on purified human (a, ß) and herpes simplex virus (types 1, 2) DNA polymerases, Mol. Pharmacol. 20: 415–422.

    PubMed  CAS  Google Scholar 

  • Rutter, W. J., Pictet, R. L., and Morris, P. W., 1973. Toward molecular mechanisms of developmental processes, Annu. Rev. Biochem. 42: 601–645.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R., 1977. DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Santi, D. V., and McHenry, C. S., 1972. 5-Fluoro-2’-deoxyuridylate: Covalent complex with thymidylate synthetase, Proc. Natl. Acad. Sci. USA 69: 1855–1857.

    Google Scholar 

  • Santi, D. V., Pogolotti, A. L., James, T. L., Wataya, Y., Ivanetich, K. M., and Lam, S S M., 1976. Thymidylate synthase: Interaction with 5-fluoro and 5-trifluoromethyl-2’deoxyuridylic acid, in Biochemistry Involving Carbon-Fluorine Bonds (R. Filler, ed.), ACS Symposium Series, No. 28, American Chemical Society, Washington, D.D., pp. 57–76.

    Google Scholar 

  • Santi, D. V., Pogolotti, A. L., Jr., Newman, E. M., and Wataya, Y., 1982. Aspects of the biochemistry and biochemical pharmacology of 5-fluorinated pyrimidines, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and J. Kobayashi, eds.), Kodansha Ltd., Tokyo; Elsevier Biomedical, Amsterdam, pp. 123–142.

    Google Scholar 

  • Sapse, A. M., and Snyder, A. G., 1985. Ab Initio studies of the antiviral drug 1-(2-fluoro-2deoxy-ß-D-arabinofuranosyl)thymine, Cancer Invest. 3: 115–121.

    CAS  Google Scholar 

  • Savarese, T. M., Cannistra, A. J., Parks, R. E., Jr., Secrist, J. A., III, Shortnacy, A. T., and Montgomery, J. A., 1987. 5’-Deoxy-5’-methylthioadenosine phosphorylase-IV. Biological activity of 2-fluoroadenine-substituted 5’-deoxy-5’-methylthioadenosine analogues, Biochem. Pharmacol. 36: 1881–1893.

    Google Scholar 

  • Schildkraut, I., Cooper, G. M., and Greer, S., 1975. Selective inhibition of the replication of herpes simplex virus by 5-halogenated analogues of deoxycytidine, Mol. Pharmacol. 11: 153–158.

    CAS  Google Scholar 

  • Schroeder, C., and Jantschak, J., 1980. Inhibitor studies of phage T4 wild-type and mutant DNA polymerase. IV. The substrate analogue 3’-fluorothymidine 5’-triphosphate, Z. Allg. Mikrobiol. 20: 657–662.

    Article  PubMed  CAS  Google Scholar 

  • Schuetz, J. D., Collins, J. M., Wallace, H. J., and Diasio, R. B., 1986. Alteration of the secondary structure of newly synthesized DNA from murine bone marrow cells by 5-fluorouracil, Cancer Res. 46: 119–123.

    Article  PubMed  CAS  Google Scholar 

  • Shealy, Y. F., O’Dell, C. A., Shannon, W. M., and Arnett, G., 1983. Carbocyclic analogues of 5-substituted uracil nucleosides: Synthesis and antiviral properties, J. Med. Chem. 26: 156–161.

    Article  PubMed  CAS  Google Scholar 

  • Shigata, S., Yokota, T., and De Clercq, E., 1985. Therapy of varicella-zoster virus infection--mechanism of action of (E)-5-(2-bromovinyl)-2’-deoxyuridine, in Proceedings of the 1st International TNO Conference on Antiviral Research (A. Billau, E. De Clercq, and H. Schellekens, eds.), Antiviral Research, Suppl. 1, Elsevier Science Publishers, Rotterdam, pp. 35–44.

    Google Scholar 

  • Shigeura, H. T., Boxer, G. E., Sampson, S. D., and Meloni, M. L., 1965. Metabolism of 2-fluoroadenine by Ehrlich ascites cells, Arch. Biochem. Biophys. 111: 713–719.

    Article  PubMed  CAS  Google Scholar 

  • Sirotnak, F. M., Chello, P. L., Dorick, D. M., and Montgomery, J. A., 1983. Specificity of systems mediating transport of adenosine, 9-ß-D-arabinofuranosyl-2-fluoroadenine, and other purine nucleoside analogues in L1210 cells, Cancer Res. 43: 104–109.

    PubMed  CAS  Google Scholar 

  • Smith, C. C., Aurelian, L., Reddy, M. P., Miller, P. S., and Ts’o, P. O. P., 1986. Antiviral effect of an oligo(nucleoside methylphosphonate) complementary to the splice junction of herpes simples virus type 1 immediate early pre-mRNAs 4 and 5, Proc. Natl. Acad. Sci. USA 83: 2787–2791.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, L. C., Eritja, R., Kaplan, B. E., Goodman, M. F., and Fazakerley, G. V., 1987. Structural and dynamic properties of a fluorouracil-adenine base pair in DNA studied by proton NMR, J. Biol. Chem. 262: 15436–15442.

    PubMed  CAS  Google Scholar 

  • Spears, C. P., Shani, J., Shahinian, A. H., Wolf, W., Heidelberger, C., and Danenberg, P. V., 1985. Assay and time course of 5-fluorouracil incorporation into RNA of L1210/0 ascites cells in vivo, Mol. Pharmacol. 27: 302–307.

    PubMed  CAS  Google Scholar 

  • Spector, S. A., Tyndall, M., and Kelley, E., 1983. Inhibition of human cytomegalovirus by trifluorothymidine, Antimicrob. Agents Chemother. 23: 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Spriggs, D., Robbins, R., Mitchell, T., and Kufe, D., 1986. Incorporation of 9-ß-D-arabinofuranosyl-2-tuoroadenine into HL-60 cellular RNA and DNA, Biochem. Pharmacol. 35: 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Stubbe, J., and Kozarich, J. W., 1980. fluoride, pyrophosphate, and base release from 2’-deoxy-2’-fluoronucleoside 5’-diphosphates by ribonucleoside-diphosphate reductase, J. Biol. Chem. 255: 5511–5513.

    Google Scholar 

  • Su, T.-L., Watanabe, K. A., Schinazi, R. F., and Fox, J. J., 1986. Nucleosides. 136. Synthesis and antiviral effects of several 1-(2-deoxy-2-fluoro-ß-D-arabinofuranosyl)-5-alkyluracils. Some structure-activity relationships, J. Med. Chem. 29: 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, S., Saneyoshi, M., Nakayama, C., Yukihirl, N., and Yoshida, S., 1985. Mechanism of selective inhibition of human cytomegalovirus replication by 1-ß-D-arabinofuranosyl5-fluorouracil, Antimicrob. Agents Chemother. 28: 326–330.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, S., Misra, H. K., Wiebe, L. I., Knaus, E. E., and Tyrrell, L. J., 1987. A proposed mechanism for the selective inhibition of human cytomegalovirus replication by 1-(2’deoxy-2’-fluoro-ß-D-arabinofuranosyl)-5-fluorouracil, Mol. Pharmacol. 31: 301–306.

    PubMed  CAS  Google Scholar 

  • Szybalski, W., 1974. X-ray sensitization by halopyrimidines, Cancer Chemother. Rep. 58: 539–557.

    PubMed  CAS  Google Scholar 

  • Tanaka, M., Kimura, K., and Yoshida, S., 1983. Enhancement of the incorporation of 5-fluorodeoxyuridylate into DNA of HL-60 cells by metabolic modulations, Cancer Res. 43: 5145–5150.

    PubMed  CAS  Google Scholar 

  • Thelander, L., Larsson, B., Hobbs, J., and Eckstein, F., 1976. Active site of ribonucleoside diphosphate reductase from Escherichia coli. Inactivation of the enzyme by 2’-substituted ribonucleoside diphosphates. J. Biol. Chem. 251: 1398–1405.

    PubMed  CAS  Google Scholar 

  • Torrence, P. F., 1985. How interferon works, in Biological Response Modifiers ( P. F. Torrence, ed.), Academic Press, Orlando, Florida, pp. 77–105.

    Google Scholar 

  • Tseng, W.-C., Derse, D., Cheng, Y.-C., Brockman, R. W., and Bennett, L. L., 1981. In vitro biological activity of 9-ß-D-arabinofuranosyl-2-fluoroadenine and the biochemical actions of its triphosphate on DNA polymerases and ribonucleotide reductase from HeLa cells, Mol. Pharmacol. 21: 474–477.

    Google Scholar 

  • Uesugi, S., Miki, H., Ikehara, M., Iwahashi, H., and Kyogoku, Y., 1979. A linear relationship between electronegativity of 2’-substituents and conformation of adenine nucleosides, Tetrahedron Lett. 42: 4073–4076.

    Article  Google Scholar 

  • Uesugi, S., Takatsuka, Y., Ikehara, M., Cheng, D. M., Kan, L. S., and Ts’o, P. O. P., 1981. Synthesis and characterization of the dinucleoside monophosphates containing 2’-fluoro2’-deoxyadenosine, Biochemistry 20: 3056–3062.

    Article  PubMed  CAS  Google Scholar 

  • Visser, D. W., Frisch, D. M., and Huang, B., 1960. Synthesis of 5-chlorodeoxyuridine and a comparative study of 5-halodeoxy uridines in E. coli, Biochem. Pharmacol. 5: 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Waehnert, U., and Langen, P., 1979. Incorporation of 3’-deoxy-3’-fluorothymidylate into DNA in vitro, 19th Hungarian Annual Meeting of Biochemistry, pp. 27–28.

    Google Scholar 

  • Watanabe, K., Reichman, U., Hirota, K., and Fox, J. J., 1979. Nucleosides. 110. Synthesis and antiherpes virus activity of some 2’-fluoro-2’-deoxyarabinofuranosylpyrimidine nucleosides, J. Med. Chem. 22: 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K. A., Reichman, U., Chu, C. K., Hollenberg, D. H., and Fox, J. J., 1980. Nucleosides. 116. 1-(ß-Xylofuranosyl)-5-fluorocytosines with a leaving group on the 3’-position. Potential double-barreled masked precursors of anticancer nucleosides, J. Med. Chem. 23: 1088–1094.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K., Su, T.-L., Klein, R. S., Chu, C. K., Matsude, A., Chun, M. W., Lopez, C., and Fox, J. J., 1983. Nucleosides. 123. Synthesis of antiviral nucleosides: 5-Substituted 1-(2-deoxy-2-halogeno-ß-D-arabinosyl)cytosines and -uracils. Some structure-activity relationships, J. Med. Chem. 26: 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Weckbecker, G., and Keppler, D. 0., 1984. Substrate properties of 5-fluorouridine diphospho sugars detected in hepatoma cells, Biochem. Pharmacol. 33: 2291–2298.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, D. S., and Crumley, J., 1977. Metabolism of 5-fluorouracil in sensitized and resistant Novikoff hepatoma cells, J. Biol. Chem. 252: 1051–1056.

    PubMed  CAS  Google Scholar 

  • Wilkinson, D. S., Tlsty, T. D., and Hanas, R. J., 1975. The inhibition of ribosomal RNA synthesis and maturation in Novikoff hepatoma cells by 5-fluorouridine, Cancer Res. 35: 3014–3020.

    PubMed  CAS  Google Scholar 

  • Will, C. L., and Dolnick, B. J., 1986. 5-Fluorouracil augmentation of dihydrofolate reductase gene transcripts containing intervening sequences in methotrexate resistant KB cells, Mol. Pharmacol. 29: 643–648.

    Google Scholar 

  • Wingard, J. R., Stuart, R. K., Saral, R., and Burns, W. H., 1981. Activity of trifluorothymidine against cytomegalovirus, Antimicrob. Agents Chemother. 20: 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Withers, S. G., and Madsen, N. B., 1980. Nucleotide activation of phosphorylase b occurs only when the nucleotide phosphate is in a dianionic form, Biochem. Biophys. Res. Commun. 97: 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Wohlrab, F., Haertle, T., Trichtinger, T., and Guschlbauer, W., 1978. 2’-Deoxy-2’fluorouridine-5’-phosphate: An alternate substrate for thymidylate synthetase from Escherichia coli K12, Nucleic Acids Res. 5: 4753–4759.

    Google Scholar 

  • Wohlrab, F., Jamieson, A. T., Hay, J., Mengel, R., and Guschlbauer, W., 1985. The effect of 2’-fluoro-2’-deoxycytidine on herpes virus growth, Biochim. Biophys. Acta 824: 233–242.

    Article  PubMed  CAS  Google Scholar 

  • Young, C. W., Schneider, R., Leyland-Jones, B., Armstrong, D., Tan, C., Lopez, C., Watanabe, K. A., Fox, J. J., and Philips, F. S., 1983. Phase I evaluation of 2’-fluoro5-iodo-ß-D-arabinofuranosylcytosine in immunosuppressed patients with herpes virus infection, Cancer Treat. Rep. 43: 5006–5009.

    CAS  Google Scholar 

  • Yung, N. C., Burchenal, J. H., Fecher, R., Duschinsky, R., and Fox, J. J., 1961. Nucleosides. XI. Synthesis of 1-ß-o-arabinofuranosyl-5-fluorouracil and related nucleosides. J. Am. Chem. Soc. 83: 4060–4065.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kirk, K.L. (1991). Biochemistry of Halogenated Nucleosides and Nucleotides. In: Biochemistry of Halogenated Organic Compounds. Biochemistry of the Elements, vol 9A+B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4605-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4605-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4607-5

  • Online ISBN: 978-1-4757-4605-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics