Biochemistry of Halogenated Analogues of Steroids, Isoprenyl Derivatives, and Other Terpenoids

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)


The serendipitous discovery by Fried and Sabo (1953, 1954) that 9α-halocortisones have enhanced glucocorticoid activity marked the genesis of a major field of medicinal chemistry. The systematic study of halogenated, and especially fluorinated, steroids that followed has produced an enormous number of new analogues and has resulted in many useful pharmaceutical and medicinal agents. In this section, a brief review of the development of halogenated glucocorticoids will be given, followed by comments on other biomedical applications of halogenated steroids. The use of halogenated steroids as biological tracers and mechanistic probes will be discussed, with special attention given to recent research on the development of radiohalogenated steroids as steroid receptor-based imaging agents.


Estrogen Receptor Androgen Receptor Progesterone Receptor Imaging Agent Visual Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asato, A. E., and Liu, R. S. H., 1986. The preparation of vicinal difluoroolefinic carbonyl compounds and their application to the synthesis of difluororetinal analogues, Tetrahedron Lett. 27: 3337–3340.CrossRefGoogle Scholar
  2. Asato, A. E., Matsumoto, H., Denny, M., and Liu, R. S. H., 1978. Fluorinated rhodopsin analogues from 10-fluoro-and 14-fluororetinal, J. Am. Chem. Soc. 100: 5957–5960.CrossRefGoogle Scholar
  3. Beierwaltes, W. H., Wieland, D. M., Yu, T., Swanson, D. P., and Mosley, S. T., 1978. Adrenal imaging agents: Rationale, synthesis, formulation and metabolism, Semin. NucL Med VIII: 5–21.Google Scholar
  4. Benisek, W. F., Ogez, J. R., and Smith, S. B., 1982. Design of site-specific pharmacologic reagents. Illustration of some alternative approaches by reagents directed towards steroid-hormone-specific targets, in Modification of Proteins. Food, Nutritional, and Pharmacological Aspects ( R. E. Fenney and J. R. Whitaker, eds.), American Chemical Society, Washington, D.C., pp. 267–323.Google Scholar
  5. Brandes, S. J., and Katzenellenbogen, J. A., 1987. Fluorinated androgens and progestins: Molecular probes for androgen and progesterone receptors with potential use in positron emission tomography, Mol. Pharmacol. 32: 391–403.PubMedGoogle Scholar
  6. Brandes, S. J., and Katzenellenbogen, J. A., 1988. Fundamental considerations in the design of fluorine-18 labeled progestins and androgens as imaging agents for receptor-positive tumors of the breast and prostate, Nucl. Med. Biol. 15: 53–57.Google Scholar
  7. Chen, P. S., Jr., and Borrevang, P., 1970. Fluorine-containing steroids, in Handbook of Experimental Pharmacology, Vol. XX/2, Pharmacology of Fluorides ( O. Eichler, A. Farah, H. Herken, and A. D. Welch, eds.), Springer-Verlag, Berlin, pp. 193–252.Google Scholar
  8. Cherbas, P., Cherbas, L., Lee, S.-S., and Nakanishi, K., 1988. 26-[125I]Iodoponasterone A is a potent ecdysone and a sensitive radioligand for ecdysone receptors, Proc. Natl. Acad. Sci. USA 85: 2096–2100.Google Scholar
  9. Chin, C.-C., Murdock, G. L., and Warren, J. C., 1982. Identification of two histidyl residues in the active site of human placental estradiol 17ß-dehydrogenase, Biochemistry 21: 3322–3326.PubMedCrossRefGoogle Scholar
  10. Counsell, R. E., Klausmeier, W. H., Weinhold, P. A., and Skinner, R. W. S., 1981. Radiolabeled androgens and their analogues, in Radiopharmaceuticals: Structure-Activity Relationships ( R. P. Spencer, ed.), Grune and Stratton, New York, pp. 425–448.Google Scholar
  11. Crescitelli, F., 1988. The gecko visual pigment: The chromophore dark exchange reaction, Exp. Eye Res. 46: 239–248.PubMedCrossRefGoogle Scholar
  12. Crescitelli, F., and Liu, R. S. H., 1988. The spectral properties and photosensitivities of analogue photopigments regenerated with 10- and 14-substituted retinal analogues, Proc. Roy. Soc. London 233: 55–76.CrossRefGoogle Scholar
  13. Filler, R., 1979. Fluorine-containing drugs, in Organofluorine Chemicals and Their Industrial Applications ( E. Banks, ed.), Horwood, Chichester, England, pp. 123–153.Google Scholar
  14. Filler, R., and Naqvi, S. M., 1982. Fluorine in biomedicinal chemistry. An overview of recent advances and selected topics, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and Y. Kobayashi, eds.), Kodansha Ltd., Tokyo; Elsevier Biomedical Press, Amsterdam, pp. 1–32.Google Scholar
  15. Fried, J., 1957. Structure-activity relationships in the field of halogenated steroids, Cancer 10: 752–756.PubMedCrossRefGoogle Scholar
  16. Fried, J., and Borman, A., 1958. Synthetic derivatives of cortical hormones, Vit. Horm. 16: 303–374.CrossRefGoogle Scholar
  17. Fried, J., and Sabo, E. F., 1953. Synthesis of 17a-hydroxycorticosterone and its 9a-halo derivatives from 11-epi-17e-hydroxycorticosterone, J. Am. Chem. Soc. 75: 2273–2274.CrossRefGoogle Scholar
  18. Fried, J., and Sabo, E. F., 1954. 9a-Fluoro derivatives of cortisone and hydrocortisone, J. Am. Chem. Soc. 76: 1455–1456.Google Scholar
  19. Gronemeyer, H., and Govindan, M. V., 1986. Affinity labelling of steroid receptors, Mol. Cell. Endocrin. 46: 1–19.CrossRefGoogle Scholar
  20. Hanzawa, Y., Yamada, A., and Kobayashi, Y., 1985. Preparation of 19,19,19-trifluororetinal (9-trifluoromethylretinal), Tetrahedron Lett. 26: 2881–2884.CrossRefGoogle Scholar
  21. Haynes, R. C., Jr., and Murad, F., 1985. Adrenocorticotropic hormone; Adrenocortical steroids and their synthetic analogues; Inhibitors of adrenocortical steroid biosynthesis, in The Pharmacological Basis of Therapeutics ( A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad, eds.), Macmillan, New York, pp. 1459–1489.Google Scholar
  22. Hochberg, R. B., 1979. Iodine-125-labeled estradiol: A gamma-emitting analogue of estradiol that binds to the estrogen receptor, Science 205: 1138–1140.PubMedCrossRefGoogle Scholar
  23. Hochberg, R. B., and Rosner, W., 1980. Interaction of 16a-[1251]iodo-estradiol with estrogen receptor and other steroid-binding proteins, Proc. Natl. Acad. Sci. USA 77: 328–332.PubMedCrossRefGoogle Scholar
  24. Hochberg, R. B., MacLusky, N. J., Chambers, J., Eisenfeld, A. J., Naftolin, F., and Schwartz, P. E., 1985a. Concentration of [125I]iodoestradiol in human ovarian tumors in vivo and correlation with estrogen receptor content, Steroids 46: 775–788.PubMedCrossRefGoogle Scholar
  25. Hochberg, R. B., Hoyte, R. M., and Rosner, W., 1985b. E-17e-(2-[16a-125I]Iodovinyl)-19-nortestosterone: The synthesis of a gamma-emitting ligand for the progesterone receptor, Endocrinology 117: 2550–2552.PubMedCrossRefGoogle Scholar
  26. Hoyte, R. M., Rosner, W., and Hochberg, R. B., 1982. Synthesis of 16a-[125I]iodo-5adihydrotestosterone and evaluation of its affinity for the androgen receptor, J. Steroid Biochem. 16: 621–628.PubMedCrossRefGoogle Scholar
  27. Hoyte, R. M., Rosner, W., Johnson, I. S., Zielinski, J., and Hochberg, R. B., 1985. Synthesis and evaluation of potential radioligands for the progesterone receptor, J. Med. Chem. 28: 1695–1699.PubMedCrossRefGoogle Scholar
  28. Kamata, S., Naga, N., Mitsugi, T., Kondo, E., Nagata, W., Nakamura, M., Miyata, K., Odaguchi, K., Shimizu, T., Kawabata, T., Suzuki, T., Ishibashi, M., and Yamada, F., 1985. Aldosterone antagonists 1. Synthesis and biological activities of 11ß,18epoxypregnane derivatives, J. Med. Chem. 28: 428: 433.Google Scholar
  29. Katzenellenbogen, J. A., 1977. Affinity labeling as a technique in determining hormone mechanisms, Vit. Horm. 41: 1–84.Google Scholar
  30. Katzenellenbogen, J. A., and Katzenellenbogen, B. S., 1984 Affinity labeling of receptors for steroid and thyroid hormones, in Vitamins and Hormones. Advances in Research and Applications ( G. D. Aurbach and D. B. McCormick, eds.), Academic Press, Orlando, Florida. pp. 213–274.CrossRefGoogle Scholar
  31. Katzenellenbogen, J. A., Hsiung, H. M., Carlson, K. E., McGuire, W. L., Kraay, R. J., and Katzenellenbogen, B. S., 1975. Iodohexestrols. II. Characterization of the binding and estrogenic activity of iodinated hexestrol derivatives, in vitro and in vivo, Biochemistry 14: 1742–1750.PubMedCrossRefGoogle Scholar
  32. Katzenellenbogen, J. A., MeElvany, K. D., Senderoff, S. G., Carlson, K. E., Landvatter, S. W., Welch, M. J., and the Los Alamos Medical Radioisotope Group, 1982. 16a[“Br]Bromo-1lß-methoxyestradiol-17ß• A gamma-emitting estrogen imaging agent with high uptake and retention in target organs, J. Nucl. Med. 23: 411–419.Google Scholar
  33. Kiesewetter, D. O., Kilbourn, M. R., Landvatter, S. W., Heiman, D. F., Katzenellenbogen, J. A., and Welch, M. J., 1984. Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues by immature rats, J. Nucl. Med. 25: 1212–1221.PubMedGoogle Scholar
  34. Kobayashi, Y., and Taguchi, T., 1982. Fluorinated vitamin D3 analogues. Synthesis and biological activities, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and Y. Kobayashi, eds.), Kodansha Ltd., Tokyo; Elsevier Biomedical Press, Amsterdam, pp. 33–53.Google Scholar
  35. Kobayashi, Y., Nakazawa, M., Kumadaki, I., Taguchi, T., Ohshima, E., Ikekawa, N., Tanaka, Y., and DeLuca, H. F., 1986. Studies on organic fluorine compounds. L. Synthesis and biological activity of 2a-fluorovitamin D3, Chem. Pharm. Bull. 34: 1568–1572.PubMedCrossRefGoogle Scholar
  36. Koeffler, P., Amatruda, T., Ikekawa, N., Kobayashi, Y., and DeLuca, H. F., 1984. Induction of macrophage differentiation of human normal and leukemic myeloid stem cells by 1,25dihydroxyvitamin D3 and its fluorinated analogues, Cancer Res. 44: 5624–5628.PubMedGoogle Scholar
  37. Kollman, P. A., Giannini, D. D., Duax, W. L., Rothenberg, S., and Wolff, M. E., 1973. Quantitation of long-range effects in steroids by molecular orbital calculations, J. Am. Chem. Soc. 95: 2869–2873.PubMedCrossRefGoogle Scholar
  38. Kowalsky, R. J., and Perry, J. R., 1987. Radiopharmaceuticals in Nuclear Medicine Practice, Appleton and Lange, Norwalk, Connecticut.Google Scholar
  39. Labrie, F., Dupont, A., Cusan, L., Giguere, M., Bergeron, N., Borsanyl, J. P., Lacourciere, Y., Blanger, A., Emond, J., Monfetti, G., Boucher, H., and Lachance, R., 1988. Combination therapy with flutamide and castration (LHRH agonist or orchiectomy) in previously untreated patients with clinical stage D2 prostate cancer, J. Steroid Biochem. 30: 107–117.PubMedCrossRefGoogle Scholar
  40. Lamb, D. J., Bullock, D. W., Hoyte, R. M., and Hochberg, R. B., 1988. A9-[16a-125I]Iodo-19nortestosterone: A gamma-emitting photoaffinity label for the progesterone receptor, Endocrinology 122: 1923–1932.PubMedCrossRefGoogle Scholar
  41. Liu, R. S. H., and Browne, D. T., 1986. A bioorganic view of the chemistry of vision: H.T.-n and B.P.-m,n mechanisms for the reactions of confined, anchored polyenes, Acc. Chem. Res. 19: 42–48.CrossRefGoogle Scholar
  42. Liu, R. S. H., Matsumoto, H., Asato, A. E., Denny, M., Shichida, Y., Yoshizawa, T., and Dahlquist, F. W., 1981. Synthesis and properties of 12-fluororetinal and 12-fluororhodopsin. A model system for 19F NMR studies of visual pigments, J. Am. Chem. Soc. 103: 7195–7201.CrossRefGoogle Scholar
  43. Liu, R. S. H., Crescitelli, F., Denny, M., Matsumoto, H., and Asato, A. E., 1986. Photosensitivity of 10-substituted visual pigment analogues: Detection of a specific secondary opsin-retinal interaction, Biochemistry 25: 7026–7030.PubMedCrossRefGoogle Scholar
  44. Lovey, A. J., and Pawson, B. A., 1982. Fluorinated retinoic acids and their analogues, 3. Synthesis and biological activity of aromatic 6-fluoro analogues, J. Med. Chem. 25: 71–75.PubMedCrossRefGoogle Scholar
  45. Marcotte, P. A., and Robinson, C. H., 1982. Inhibition and inactivation of estrogen synthetase (aromatase) by fluorinated substrate analogues, Biochemistry 21: 2773–2778.PubMedCrossRefGoogle Scholar
  46. Mazaitis, J. K., Gibson, R. E., Komai, G., Eckelman, W. C., Francis, B., and Reba, R., 1980. Radioiodinated estrogen derivatives, J. Nucl. Med. 21: 142–146.PubMedGoogle Scholar
  47. McElvany, K. D., Carlson, K. E., Welch, M. J., Senderoff, S. G., Katzenellenbogen, J. A., and the Los Alamos Medical Radioisotope Group, 1982. In vivo comparison of 16a[77Br]bromoestradiol-17ß and 16a-[125I]iodoestradiol-17ß, J. Nucl. Med. 23: 420–424.Google Scholar
  48. Mead, D., Loh, R., Asato, A. E., and Liu, R. S. H., 1985. Fluorinated retinoids via crossed aldol condensation of 1,1,1-trifluoroacetone, Tetrahedron Lett. 26: 2873–2876.CrossRefGoogle Scholar
  49. Mintun, M. A., Welch, M. J., Siegel, B. A., Mathias, C. J., Brodack, J. W., McGuire, A. H., and Katzenellenbogen, J. A., 1988. Breast cancer: Pet imaging of estrogen receptors, Radiology 169: 45–48.PubMedGoogle Scholar
  50. Muehlbacher, M., and Poulter, C. D., 1985. Isopentenyl diphosphate: demethylallyl diphosphate isomerase. Irreversible inhibition of the enzyme by active-site-directed covalent attachment, J. Am. Chem. Soc. 107: 8307–8308.CrossRefGoogle Scholar
  51. Muehlbacher, M., and Poulter, C. D., 1988. Isopentenyl-diphosphate isomerase: Inactivation of the enzyme with active-site-directed irreversible inhibitors and transition-state analogues, Biochemistry 27: 7315–7328.PubMedCrossRefGoogle Scholar
  52. Nakada, M., Tanaka, Y., DeLuca, H. F., Kobayashi, Y., and Ikekawa, N., 1985. Biological activities and binding properties of 23,23-difluoro-25-hydroxyvitamin D3 and its la-hydroxy derivative, Arch. Biochem. Biophys. 241: 173–178.PubMedCrossRefGoogle Scholar
  53. Nave, J.-F., d’Orchymont, J., Ducep, J.-B., Piriou, F., and Jung, M. J., 1985. Mechanism of the inhibition of cholesterol biosynthesis by 6-fluoromevalonate, Biochem. J. 227: 247–254.PubMedGoogle Scholar
  54. Nozaki, T., 1983. Other cyclotron radionuclides, in Radionuclides Production, Vol. II ( F. Helus and L. G. Colombetti, eds.), CRC Press, Boca Raton, Florida, pp. 104–124.Google Scholar
  55. Ohshima, E., Sai, H., Takatsuto, S., Ikekawa, N., Kobayashi, Y., Tanaka, Y, and DeLuca, H. F., 1984. Synthesis and biological activity of la-fluoro-25-hydroxyvitamin D3, Chem. Pharm. Bull. 32: 3525–3531.PubMedCrossRefGoogle Scholar
  56. Okamoto, S., Tanaka, Y, DeLuca, H. F., Kobayashi, Y., and Ikekawa, N., 1983. Biological activity of 24,24-difluoro-1,25-dihydrovitamin D3, Am. J. Physiol. 244: E159 - E163.PubMedGoogle Scholar
  57. Onoda, M., Haniu, M., Yanagibashi, K., Sweet, F., Shively, J. E., and Hall, P. F., 1987. Affinity alkylation of the active site of C21 steroid side-chain cleavage cytochrome P-450 from neonatal porcine testis: A unique cysteine residue alkylated by 17-(bromoacetoxy)progesterone, Biochemistry 26: 657–662.PubMedCrossRefGoogle Scholar
  58. Oshida, J.-I., Morisaki, M., and Ikekawa, N., 1980. Synthesis of 2ß-fluoro-le-hydroxyvitamin D3, Tetrahedron Lett. 21: 1755–1756.CrossRefGoogle Scholar
  59. Paaren, H. E., Fivizzani, M. A., Schnoes, H. K., and DeLuca, H. F., 1981. la,25Difluorovitamin D3: An inert vitamin D analogue, Arch. Biochem. Biophys. 209: 579–583.Google Scholar
  60. Pomper, M. G., Katzenellenbogen, J. A., Welch, M. J., Brodack, J. W., and Mathias, C. J., 1988. 21-[18F]Fluoro-16e-ethyl-19-norprogesterone: Synthesis and target tissue selective uptake of a progestin receptor based radiotracer for positron emission tomography, J. Med. Chem. 31: 1360–1363.Google Scholar
  61. Poulter, C. D., and Rilling, H., 1978. The prenyl transfer reaction. Enzymatic and mechanistic studies of the l’-4 coupling reaction in the terpene biosynthetic pathway, Acc. Chem. Res. 11: 307–313.CrossRefGoogle Scholar
  62. Poulter, C. D., and Satterwhite, D. M., 1977. Mechanism of the prenyl-transfer reaction. Studies with (E)- and (Z)-3-trifluoromethyl-2-buten-1-y1 pyrophosphate, Biochemistry 16: 5470–5478.PubMedCrossRefGoogle Scholar
  63. Poulter, C. D., Mash, E. A., Argyle, J. C., Muscio, O. J., and Rifling, H., 1979. Farnesyl pyrophosphate synthase. Mechanistic studies of the l’-4 coupling reaction in the terpene biosynthetic pathway, J. Am. Chem. Soc. 101: 6761–6763.CrossRefGoogle Scholar
  64. Prestwich, G. D., 1986. Fluorinated sterols, hormones and pheromones: Enzyme-targeted disruptants in insects, Pestic. Sci. 37: 430 440.Google Scholar
  65. Prestwich, G. D., Yamaoka, R., Phirwa, S., and DePalma, A., 1984. Isolation of 2-fluorocitrate produced by in vivo dealkylation of 20-fluorostigmasterol in an insect, J. Biol. Chem. 259: 11022–11026.PubMedGoogle Scholar
  66. Quisted, G. B., Cerf, D. C., Schooley, D. A., and Staal, G. B., 1981. Fluoromevalonate acts as an inhibitor of insect juvenile hormone biosynthesis, Nature 289: 176–177.Google Scholar
  67. Reardon, J. E., and Abeles, R. H., 1986. Mechanism of action of isopentenyl pyrophosphate isomerase: Evidence for a carbonium ion intermediate, Biochemistry 25: 5609–5616.PubMedCrossRefGoogle Scholar
  68. Reardon, J. E., and Abeles, R. H., 1987. Inhibition of cholesterol biosynthesis by fluorinated mevalonate analogues, Biochemistry 26: 4717–4722.PubMedCrossRefGoogle Scholar
  69. Ringold, H. J., Lawrence, H., Jr., and Graves, J. M. H., 1964. The influence of unsaturation and of fluorine substitution on ketone-alcohol equilibrium constants. A measure of a,ß-unsaturated ketone resonance energy and of halogen destabilization, J. Am. Chem. Soc. 86: 4510–4512.CrossRefGoogle Scholar
  70. Robinson, S. P., and Jordon, V. C., 1988. Metabolism of steroid-modifying anticancer agents, Pharmacol. Ther. 36: 41–103.PubMedCrossRefGoogle Scholar
  71. Shichida, Y., Ono, T., Yoshizawa, T., Matsumoto, H., Asato, A., Zingoni, J. P., and Liu, R. S. H., 1987. Electrostatic interaction between retinylidene chromophore and opsin in rhodopsin studied by fluorinated rhodopsin analogues, Biochemistry 26: 4422–4428.PubMedCrossRefGoogle Scholar
  72. Shiuey, S.-J., Partridge, J. J., and Uskokovic, M. R., 1988. Triply convergent synthesis of la,25-dihydroxy-24(R)-fluorocholecalciferol, J. Org. Chem. 53: 1040–1046.CrossRefGoogle Scholar
  73. Singer, F. M., Januszka, J. P., and Borman, A., 1959. New inhibitors of in vitro conversion of acetate and mevalonate to cholesterol, Proc. Soc. Exp. Biol. 102: 370–373.PubMedGoogle Scholar
  74. Stern, P. H., Tanaka, Y., DeLuca, H., Ikekawa, N., and Kobayashi, Y., 1981. Bone resorptive activity of side-chain fluoro derivatives of 25-hydroxy-and lx,25-dihydroxy D3 in culture, Mol. Pharmacol. 20: 460–462.PubMedGoogle Scholar
  75. Stern, P. H., Mavreas, T., Tanaka, Y., DeLuca, H. F., Ikekawa, N., and Kobayashi, Y., 1984. Fluoride substitution of vitamin D analogues at C-26 and C-27: Enhancement of activity of 25-hydroxyvitamin D but not of 1,25-dihydroxyvitamin D on bone and intestine in vitro, J. Pharmacol. Exp. Ther. 229: 9–13.PubMedGoogle Scholar
  76. Swain, S. M., Steinberg, S. M., Bagley, C., and Lippman, M. E., 1988. Tamoxifen and fluoxymesterone versus tamoxifen and danazol in metastatic breast cancer-a randomized study, Breast Cancer Res. Treat. 12: 51–57.PubMedCrossRefGoogle Scholar
  77. Thrall, J. H., Freitas, J. E., and Beierwaltes, W. H., 1978. Adrenal scintigraphy, Semin. Nucl. Med. VIII: 23–41.Google Scholar
  78. Tschesche, R., and Machleidt, H., 1960. Synthesen von substituierten ß-Hydroxy-ß-methylglutarsäuren and Mevalonsäuren, Justus Liebigs Ann. Chem. 631: 61–76.CrossRefGoogle Scholar
  79. Weeks, C. M., Daux, W. L., and Wolff, M. E., 1973. A comparison of the molecular structures of six corticosteroids, J. Am. Chem. Soc. 95: 2865–2868.PubMedCrossRefGoogle Scholar
  80. Welch, J. T., 1987. Advances in the preparation of biologically active organofluorine compounds, Tetrahedron 43: 3123–3197.CrossRefGoogle Scholar
  81. Wilhelm, F., Dauben, W. G., Kohler, B., Roesle, A., and Norman, A. W., 1984. 6-Fluorovitamin D3: A new antagonist of the biological actions of vitamin D3 and its metabolites which interacts with the intestinal receptor for la,25(OH)2- vitamin D3, Arch. Biochem. Biophys. 233: 127–132.Google Scholar
  82. Wolff, M. E., and Hansch, C., 1973. Correlation of physicochemical parameters and biological activities of steroids. 9a-Substituted corticol derivatives, Experentia 29: 1111–1113.CrossRefGoogle Scholar
  83. Wong, T. C., Rutar, V., and Wang, J.-S., 1984. Study of ‘H chemical shifts and couplings with 19F in 9a-fluorocortisol. Application of a novel ‘H-13C chemical shift correlation technique with homonuclear decoupling, J. Am. Chem. Soc. 106: 7046–7051.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations