Enzymes in Organic Solvents

  • Aleksey Zaks
Chapter
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

The high potential of biocatalysis for a variety of industrial applications is widely recognized. For centuries various enzyme-based transformations have been used in wine and bread making, milk clotting, and beer brewing. Added to this list are recent advances in food technology such as processes for the production of high-fructose corn syrup, chillproofing of beer, hydrolysis of lactose, and saccharification of starch-containing raw materials. The food industry is now the largest consumer of enzymes, accounting for over 50% of the $ 445 million enzyme market.1 The use of enzymes as practical catalysts in the chemical industry, however, has been limited. This is mainly attributed to their high cost, relative instability in harsh industrial environments, and strong competition with current and well established chemical processes. However, applied enzymology has always been an area of high expectation. Unique properties of enzymes such as their superior regio- and stereoselectivity, ability to catalyze a variety of reactions under mild conditions, nontoxicity, and biodegradability make them potentially useful in a variety of applications.

Keywords

Organic Solvent Polyphenol Oxidase Butyl Acetate Butyl Ether Nonaqueous Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. G. Greenwald and J. M. Nystrom, Spectrum, Food Industry, Arthur D. Little Decision Resources (1988).Google Scholar
  2. 2.
    L. G. Butler, Enzyme Microb. Technol. 1, 253 (1979).CrossRefGoogle Scholar
  3. 3.
    S. Fukui and A. Tanaka, Adv. Biochem. Eng. 29, 1 (1984).Google Scholar
  4. 4.
    M. D. Lilly, J. Chem. Tech. Biotechnol. 32, 162 (1982).Google Scholar
  5. 5.
    G. Carrea, Trends Biotechnol. 2, 102 (1984).CrossRefGoogle Scholar
  6. 6.
    P. L. Luisi, Angew. Chem. 24, 439 (1985).CrossRefGoogle Scholar
  7. 7.
    P. L. Luisi and C. Laane, Trends Biotechnol. 4, 153 (1986).CrossRefGoogle Scholar
  8. 8.
    A. M. Klibanov, Chemtech. 16, 354 (1986).Google Scholar
  9. 9.
    J. S. Deetz and J. D. Rozzell, Trends Biotechnol. 6, 15 (1988).CrossRefGoogle Scholar
  10. 10.
    A. Zaks and A. J. Russell, J. Biotechnol. 8, 259 (1988).CrossRefGoogle Scholar
  11. 11.
    J. Dordick, Enzyme Microb. Technol. 11, 194 (1989).CrossRefGoogle Scholar
  12. 12.
    G. Carrea, S. Riva, R. Bovara, and P. Pasta, Enzyme Microb. Technol. 10, 333 (1988).CrossRefGoogle Scholar
  13. 13.
    R. D. Schwartz and C. J. McCoy, Appl. Environ. Microbiol. 34, 47 (1977).PubMedGoogle Scholar
  14. 14.
    B. C. Buckland, P. Dunnill, and M. D. Lilly, Biotechnol. Bioeng. 17, 815 (1975).CrossRefGoogle Scholar
  15. 15.
    G. A. Homandberg, J. A. Mattis, and M. Laskowski, Jr., Biochemistry 17, 5220 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    C. F. Barbas, J. R. Matos, J. B. West, and C.-H. Wong, J. Amer. Chem. Soc. 110, 5162 (1988).CrossRefGoogle Scholar
  17. 17.
    K. Martinek, A. V. Levashov, Y. L. Khmelnitski, N. L. Klyachko, and I. V. Berezin, Science 218, 889 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    J. A. McCammon, B. R. Gelin, and M. Karplus, Nature 267, 585 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    J. A. Rupley, E. Gratton, and G. Caren, Trends Biochem. Sci. 8, 18 (1983).CrossRefGoogle Scholar
  20. 20.
    G. Careri, E. Gratton, P. H. Yang, and J. A. Rupley, Nature 284, 572 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    J. E. Schinkel, N. W. Downer, and J. A. Rupley, Biochemistry 24, 352 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    S. Bone, Biochim. Biophys. Acta 916, 128 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Zaks and A. M. Klibanov, J. Biot Chem. 263, 8017 (1988).Google Scholar
  24. 24.
    A. Zaks and A. M. Klibanov, Proc. Natl. Acad. Sci. USA 82, 3192 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Laane, S. Boeren, K. Vos, and C. Veeger, Biotechnol. Bioeng. 30, 81 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Zaks and A. M. Klibanov, J. Biol. Chem. 263, 3194 (1988).PubMedGoogle Scholar
  27. 27.
    L. E. S. Brink and J. Tramper, Biotechnol. Bioeng. 27, 1258 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    P. J. Hailing, Trends Biotechnol. 7, 50 (1989).CrossRefGoogle Scholar
  29. 29.
    M. Reslow, P. Adlercreutz, and B. Mattiasson, Eur. J. Biochem. 172, 573 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    K. Takahashi, Y. Kodera, T. Yoshimoto, A. Ajima, A. Matsushima, and Y. Inada, Biochem. Biophys. Res. Commun. 131, 532 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Matsushima, M. Okada, and Y. Inada, FEBS. Lett. 178, 275 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    K. Takahashi, A. Ajima, T. Yoshimoto, and Y. Inada, Biochem. Biophys. Res. Commun. 125, 761 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    K. Takahashi, H. Nishimura, T. Yoshimoto, Y. Saito, and Y. Inada, Biochem. Biophys. Res. Commun. 121, 261 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Zaks and A. M. Klibanov, J. Am. Chem. Soc. 108, 2767 (1986).CrossRefGoogle Scholar
  35. 35.
    A. J. Russell and A. M. Klibanov, J. Biol. Chem. 263, 11624 (1988).PubMedGoogle Scholar
  36. 36.
    N. Chinsky, A. L. Margolin, and A. M. Klibanov, J. Amer. Chem. Soc. 111, 386 (1989).CrossRefGoogle Scholar
  37. 37.
    T. Sakurai, A. L. Margolin, A. J. Russell, and A. M. Klibanov, J. Amer. Chem. Soc. 110, 7236 (1988).CrossRefGoogle Scholar
  38. 37a.
    C.-S. Chen and C. J. Sih, Angew. Chem. Int. Ed. Engl. 28, 695 (1989).CrossRefGoogle Scholar
  39. 38.
    S. J. Singer, Adv. Protein Chem. 17, 1 (1962).CrossRefGoogle Scholar
  40. 39.
    N. J. Solli and T. T. Herskovits, Anal. Biochem. 54, 370 (1973).PubMedCrossRefGoogle Scholar
  41. 40.
    M. Winkler and P. Doty, Biochim. Biophys. Acta 54, 488 (1961).CrossRefGoogle Scholar
  42. 41.
    T. T. Herskovits, B. Gadegbeku, and H. Juliet, J. Biol. Chem. 245, 2588 (1970).PubMedGoogle Scholar
  43. 42.
    E. P. Pittz and S. Timasheff, Biochemistry 17, 615 (1978).PubMedCrossRefGoogle Scholar
  44. 43.
    T. Arakawa and S. Timasheff, Biochemistry 21, 6536 (1982).PubMedCrossRefGoogle Scholar
  45. 44.
    L. T. Kanerva and A. M. Klibanov, J. Amer. Chem. Soc. 111, 6864 (1989).CrossRefGoogle Scholar
  46. 45.
    P. A. Burke, S. O. Smith, W. W. Bachovchin, and A. M. Klibanov, J. Amer. Chem. Soc. 111, 8290 (1989).CrossRefGoogle Scholar
  47. 46.
    A. Zaks and A. M. Klibanov, Science 224, 1249 (1984).PubMedCrossRefGoogle Scholar
  48. 47.
    G. Ayala, M. Tuena de Gomez-Puyou, A. Gomez-Puyou, and A. Darzon, FEBS Lett. 203, 41 (1986).PubMedCrossRefGoogle Scholar
  49. 47a.
    G. Garza-Ramos, A. Darszon, M. Tuena de Gomez-Puyou, and A. Gomez-Puyou, Biochemistry 28, 3177 (1989).PubMedCrossRefGoogle Scholar
  50. 48.
    C. J. Wheeler and R. Croteau, Arch. Biochem. Biophys. 248, 429 (1986).PubMedCrossRefGoogle Scholar
  51. 49.
    M. Reslow, P. Adlercreutz, and B. Mattiasson, Appl. Microbiol. Biotechnol. 26, 1 (1987).CrossRefGoogle Scholar
  52. 50.
    A. R. Macrae, J. Am. Oil Chem. Soc. 60, 243 (1983).CrossRefGoogle Scholar
  53. 51.
    A. P. Ison, P. Dunnill, and M. D. Lilly, Enzyme Microb. TechnoL 10, 47 (1988).CrossRefGoogle Scholar
  54. 52.
    G. Kirchner, M. P. Scollar, and A. M. Klibanov, J. Am. Chem. Soc. 107, 7072 (1985).CrossRefGoogle Scholar
  55. 53.
    S. Koshiro, K. Sonomoto, A. Tanaka, and S. Fukui, J. Biotechnol. 2, 47 (1985).CrossRefGoogle Scholar
  56. 54.
    D. Bianchi, P. Cesti, and E. Battistel, J. Org. Chem. 53, 5531 (1988).CrossRefGoogle Scholar
  57. 55.
    J. Hiratake, M. Inagaki, T. Nishioka, and J. Oda, J. Org. Chem. 53, 6130 (1988).CrossRefGoogle Scholar
  58. 56.
    G. Langrand, J. Baratti, G. Buono, and C. Triantaphylides, Tetrahedron Lett. 27, 29 (1986).CrossRefGoogle Scholar
  59. 57.
    G. Gil, E. Ferre, A. Meou, J. Le Petit, and C. Triantaphylides, Tetrahedron Lett. 28, 1647 (1987).CrossRefGoogle Scholar
  60. 58.
    H. Kitaguchi, P. A. Fitzpatrick, J. E. Huber, and A. M. Klibanov, J. Amer. Chem. Soc. 111, 3094 (1989).CrossRefGoogle Scholar
  61. 59.
    A. L. Gutman, K. Zuobi, and A. Boltansky, Tetrahedron Lett. 28, 3861 (1987).CrossRefGoogle Scholar
  62. 60.
    A. Makita, T. Nihira, and Y. Yamada, Tetrahedron Lett. 28, 805 (1987).CrossRefGoogle Scholar
  63. 61.
    Z.-W. Guo and C. J. Sih, J. Amer. Chem. Soc. 110, 1999 (1988).CrossRefGoogle Scholar
  64. 62.
    A. L. Margolin, J.-Y. Crenne, and A. M. Klibanov, Tetrahedron Lett. 28, 1607 (1987).CrossRefGoogle Scholar
  65. 63.
    M. Therisod and A. M. Klibanov, J. Am. Chem. Soc. 108, 5638 (1986).CrossRefGoogle Scholar
  66. 64.
    M. Therisod and A. M. Klibanov, J. Am. Chem. Soc. 109, 3977 (1987).CrossRefGoogle Scholar
  67. 65.
    W. J. Hennen, H. M. Sweers, Y.-F. Wang, and C.-H. Wong, J. Org. Chem. 53, 4939 (1988).CrossRefGoogle Scholar
  68. 66.
    Y.-F. Wang, J. J. Lalonde, M. Momongan, D. E. Bergbreiter, and C.-H. Wong, J. Amer. Chem. Soc. 110, 7200 (1988).CrossRefGoogle Scholar
  69. 67.
    J. Chopineau, F. D. McCafferty, M. Therisod, and A. M. Klibanov, Biotechnol. Bioeng. 31, 208 (1988).PubMedCrossRefGoogle Scholar
  70. 68.
    S. Riva and A. Klibanov, J. Amer. Chem. Soc. 110, 3291 (1988).CrossRefGoogle Scholar
  71. 69.
    S. Riva, J. Chopineau, A. P. G. Kieboom, and A. Klibanov, J. Amer. Chem. Soc. 110, 584 (1988).CrossRefGoogle Scholar
  72. 70.
    W. Kullmann, Enzymatic Peptide Synthesis, CRC Press (1987).Google Scholar
  73. 71.
    K. Oyama, S. Nishimura, Y. Nonaka, K. Kihara, and T. Hashimoto, J. Org. Chem. 46, 5241 (1981).CrossRefGoogle Scholar
  74. 72.
    H. Kise, A. Hayakawa, and H. Noritomi, Biotechnol. Lett. 9, 543 (1987).CrossRefGoogle Scholar
  75. 73.
    A. L. Margolin and A. M. Klibanov, J. Am. Chem. Soc. 109, 3802 (1987).CrossRefGoogle Scholar
  76. 74.
    J. B. West and C.-H. Wong, Tetrahedron Lett. 28, 1629 (1987).CrossRefGoogle Scholar
  77. 75.
    J. Grunwald, B. Wirz, M. P. Scollar, and A. M. Klibanov, J. Amer. Chem. Soc. 108, 6732 (1986).CrossRefGoogle Scholar
  78. 76.
    R. Z. Kazandjian and A. M. Klibanov, J. Amer. Chem. Soc. 107, 5448 (1986).CrossRefGoogle Scholar
  79. 77.
    J. S. Dordick, M. A. Marietta, and A. M. Klibanov, Biotechnol. Bioeng. 30, 31 (1987).PubMedCrossRefGoogle Scholar
  80. 78.
    R. Z. Kazandjian, J. S. Dordick, and A. M. Klibanov, Biotechnol. Bioeng. 28, 417 (1986).PubMedCrossRefGoogle Scholar
  81. 79.
    F. R. Dastoli and S. Price, Arch. Biochem. Biophys. 118, 163 (1967).CrossRefGoogle Scholar
  82. 80.
    F. R. Dastoli and S. Price, Arch. Biochem. Biophys. 122, 289 (1967).CrossRefGoogle Scholar
  83. 81.
    F. R. Dastoli, N. A. Musto, and S. Price, Arch. Biochem. Biophys. 115, 44 (1966).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Aleksey Zaks
    • 1
  1. 1.Enzytech, Inc.CambridgeUSA

Personalised recommendations