Microbial Biocatalysis for the Alteration of Fossil Fuels

  • Michael E. McIlwain
  • Patrick R. Dugan
Chapter
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Fossil fuels, including coal, oil, oil shales, tar sands, and natural gas, are the world’s predominant consumable energy sources. The United States annually consumes approximately one billion tons of coal, 6.2 billion barrels of oil, and more than 18 billion cubic feet of natural gas.1 The strategic importance of these fuels has resulted in renewed interest in using biological catalysis—both whole cells and cell-free extracts—to recover, convert, process, and supplement these fossil fuels. Although the first reports of the ability of microorganisms to interact with fossil fuels date back to the late 1940s and early 1950s, large-scale technologies have not yet appeared. This fact is not due to the lack of action by microorganisms, but rather to (a) the slow rate of biological metabolic processes as compared to conventional chemical process rates, (b) a general lack of knowledge of specific metabolic and biochemical reactions, and (c) the slowness with which the potential for bioprocesses is accepted by the energy-producing community. Recent advances in genetics and biochemistry now permit modification of microorganisms and their metabolic rates, and this new development has stimulated a resurgence of interest in this area.

Keywords

Pulp Density High Sulfur Coal Pachuca Tank Coal Solubilization Idaho National Engineer Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monthly Energy Review, IEA/DOE-0035, January (1989).Google Scholar
  2. 2.
    P. R. Dugan, in: Processing and Utilization of High Sulfur Coals, Coal Science and Technology, Vol. 9, p. 101, Elsevier, Amsterdam (1985).Google Scholar
  3. 3.
    J. E. Duran, S. R. Mahassay, and L. M. Strock, Fuel 65, 1167 (1986).CrossRefGoogle Scholar
  4. 4.
    R. N. Schicho, S. Brown, G. Olsen, E. Parks, and R. Kelly, Fuel 68, 1368 (1989).CrossRefGoogle Scholar
  5. 5.
    A. Attar, Hydrocarbon Processing, January, 175 (1979).Google Scholar
  6. 6.
    A. R. Colmer and M. E. Hinkle, Science 106, 253 (1947).PubMedCrossRefGoogle Scholar
  7. 7.
    Z. M. Zarubina, N. N. Lyalikova, and Ye. I. Shmuk, Inz. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metall. Topl. 1, 117 (1959).Google Scholar
  8. 8.
    D. Ashmeed, Colliery Guardian 190, 694 (1955).Google Scholar
  9. 9.
    M. P. Silverman, M. H. Rogoff, and I. Wender, Fuel 42, 113 (1963).Google Scholar
  10. 10.
    V. V. Balashova, I. Y. Vedinina, G. E. Markosan, and G. A. Zavarin, Microbiol. 43, (1974).Google Scholar
  11. 11.
    P. R. Dugan, C. B. MacMillan, and R. M. Pfister, J. Bacteriol. 101, 973 (1970).PubMedGoogle Scholar
  12. 12.
    S. N. Groudev and F. N. Genchev, Compt. Rendus Bulgarian Acad. Sci. 32, 353 (1979).Google Scholar
  13. 13.
    A. P. Harrison, Ann. Rev. Microbiol. 38, 265 (1984).CrossRefGoogle Scholar
  14. 14.
    J. H. Tuttle, P. R. Dugan, and W. A. Appel, Appl. and Environ. Microbiol. 33, 459 (1977).Google Scholar
  15. 15.
    C. L. Brierley, Ph. D. Thesis, Montana State University, Dissertation Abstracts 67, 1342 (1966).Google Scholar
  16. 16.
    C. L. Brierley and J. A. Brierley, Can. J. Microbiol. 19, 183 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    J. A. Brierley, P. R. Norris, D. P. Kelly, and N. W. LeRoux, European J. Appl. Microbiol. Biotech. 5, 291 (1981).CrossRefGoogle Scholar
  18. 18.
    T. D. Brock, K. M. Brock, R. T. Belly, and R. L. Weiss, Arch. Microbiol. 84, 54 (1972).Google Scholar
  19. 19.
    R. Guay and M. Silver, Can. J. Microbiol 21, 281 (1975).PubMedCrossRefGoogle Scholar
  20. 20.
    B. B. Bohlool and T. D. Brock, Appl. Microbiol 28, 11 (1974).PubMedGoogle Scholar
  21. 21.
    F. Kargi and J. M. Robinson, Appl. Environ. Microbiol 24, 2115 (1982).Google Scholar
  22. 22.
    F. Kargi and J. M. Robinson, Biotech. Bioeng. 26, 687 (1984).CrossRefGoogle Scholar
  23. 23.
    W. A. Apel, P. R. Dugan, and J. H. Tuttle, J. Bacteriol. 142, 295 (1980).PubMedGoogle Scholar
  24. 24.
    M. P. Silverman and H. L. Ehrlich, Adv. Appl. Microbiol. 4, 153 (1964).CrossRefGoogle Scholar
  25. 25.
    M. Rodriquez-Leiva and H. Tributsch, Arch. Microbiol. 149, 401 (1988).CrossRefGoogle Scholar
  26. 26.
    G. F. Andrews, in: Biotechnology in Mineral and Metal Processing, Ch. 12, Society of Mining Engineers, Inc., Colorado (1989).Google Scholar
  27. 27.
    W. Uhl, H.-J. Hone, M. Beyer, and J. Klein, Biotech. Bioeng. 34, 1341 (1989).CrossRefGoogle Scholar
  28. 28.
    G. F. Andrews Proceeding of the 4th Biological Processing of Fossil Fuels WorkshopTyson’s Corners, VA, August (1989). Google Scholar
  29. 29.
    P. R. Dugan, in: Microbial Chemoautotrophy ( W. R. Strohl and O. H. Tuovinen, eds.), The Ohio State University Press, Columbus (1984).Google Scholar
  30. 30.
    G. F. Andrews, M. Dauch, and T. Harrison, Biotechnol. Bioeng. 32, 813 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    P. R. Dugan and W. A. Apel, Metallurgical Applications of Bacteria, Academic Press, New York (1978).Google Scholar
  32. 32.
    M. Elzeky and Y. A. Attia, in: Biotechnology in Mineral and Metal Processing (B. J. Schemer, F. M. Doyle, and S. K. Kawatra, eds.), Ch. 18, Society of Mining Engineers, Inc., Colorado (1989).Google Scholar
  33. 33.
    G. J. Olsen, F. E. Brinckman, K. L. Jewett, and J. S. Thayer, in: Biotechnology in Mineral and Metal Processing (B. J. Schemer, F. M. Doyle, and S. K. Kawatra, eds.), Ch. 6, Society of Mining Engineers, Inc., Colorado (1989).Google Scholar
  34. 34.
    G. J. Olsen and F. E. Brinckman, Proceedings, Biological Treatment of Coals Workshop, Herndon, VA, June (1986).Google Scholar
  35. 35.
    E. Beier, Processing and Utilization of High Sulfur Coals, Coal Science and Technology, Vol. 9, Elsevier, Amsterdam, p. 653 (1985).Google Scholar
  36. 36.
    F. Kargi, Enzyme Microb. Technology 4, 13 (1982).Google Scholar
  37. 37.
    P. Bos, T. F. Huber, K. Luyben, and J. G. Kuenen, Resources, Conservation and Recycling 1, 279 (1988).CrossRefGoogle Scholar
  38. 38.
    R. D. Sproull, H. J. Francis, C. R. Krishna, and D. J. Dodge, Proceedings, Biological Treatment of Coals Workshop, Herndon, VA, July, p. 83 (1986).Google Scholar
  39. 39.
    C. Rai, Biotech. Progress 1, 200 (1985).CrossRefGoogle Scholar
  40. 40.
    J. D. Isbister, G. Anspach, and A. DeSouza, unpublished results (1987).Google Scholar
  41. 41.
    A. J. Davis and A. S. Atkins, Resources, Conservation and Recycling 1, 223 (1988).CrossRefGoogle Scholar
  42. 42.
    Y. A. Attia, Proceeding, Bioprocessing of Coals Workshop-III, Tyson’s Corners, VA, August, p. 199 (1988).Google Scholar
  43. 43.
    D. A. Malik, Process Biochemistry 10, September (1978).Google Scholar
  44. 44.
    K. Yamada, Y. Minoda, K. Kodama, S. Nakatani, and T. Akasaki, Agric. Biol. Chem. 32, 840 (1968).CrossRefGoogle Scholar
  45. 45.
    D. J. Monticello and W. R. Finnerty, Annu. Rev. Microbiol. 39, 371 (1985).PubMedCrossRefGoogle Scholar
  46. 46.
    J. D. Isbister and E. A. Kobylinski, in: Processing and Utilization of High Sulfur Coals, Coal Science and Technology, Vol. 9, Elsevier, Amsterdam (1985).Google Scholar
  47. 47.
    J. J. Kilbane, Proceeding, Bioprocessing of Coals Workshop-III, Tyson’s Corners, VA, p. 156 (1988).Google Scholar
  48. 48.
    M. S. Cohen and P. D. Gabriele, Appl. Environ. Microbiol. 44, 23 (1982).PubMedGoogle Scholar
  49. 49.
    C. D. Scott, G. W. Strandberg, and S. N. Lewis, Biotech. Progress 2, 131 (1986).CrossRefGoogle Scholar
  50. 50.
    T. K. Kirk and H. H. Chang, in: Microbial Degradation of Organic Compounds ( D. T. Gibson, ed.), Marcel Dekker, New York (1986).Google Scholar
  51. 51.
    T. K. Kirk and H. H. Chang, Holzforschung 29, 56 (1975).CrossRefGoogle Scholar
  52. 52.
    T. Fukuzumi and T. Shibamoto, Nippon Mokuzai Gakkaishi 11, 45 (1965).Google Scholar
  53. 53.
    R. Narayan, in: Proceedings: First Annual Workshop on Biologic Processing of Coals, Electric Power Research Institute, Monterey, CA, February (1986).Google Scholar
  54. 54.
    J. A. Korburger, Proc. W. Va. Acad. Sci. 36, 26 (1964).Google Scholar
  55. 55.
    M. H. Ragoff, Microbiology of Coal,US Bureau of Mines, Circular No 8075.Google Scholar
  56. 56.
    R. M. Fakoussa, Ph.D. Thesis, University of Bonn (1981).Google Scholar
  57. 57.
    B. W. Wilson, R. M. Bean, J. A. Franz, B. L. Thomas, M. S. Cohen, H. Aronson, and E. T. Gray, Jr., Energy and Fuels 1, 80 (1987).CrossRefGoogle Scholar
  58. 58.
    H. B. Ward, Syst. Appl. Microbiol. 6, 236 (1985).CrossRefGoogle Scholar
  59. 59.
    G. W. Strandberg and S. N. Lewis, Biotechnol. Bioeng. Symp. 17, 153 (1986).Google Scholar
  60. 60.
    B. W. Wilson, R. M. Bean, J. Pyne, L. I. Stewart, and J. Fredrickson, in: Proceedings, Biological Treatment of Coals Workshop, Herndon, VA, June, p. 114 (1986).Google Scholar
  61. 61.
    M. Dahlberg, in: Proceedings, Biological Treatment of Coals Workshop, Herndon, VA, June, p. 172 (1986).Google Scholar
  62. 62.
    D. R. Quigley, J. R. Wey, C. R. Breckenridge, and H. J. Hatcher, in: Proceedings, Biological Treatment of Coals Workshop, Vienna, VA, July, p. 151 (1987).Google Scholar
  63. 63.
    C. D. Scott and S. N. Lewis, in: Biotechnology Applied to Fossil Fuels (D. L. Wise, ed.), CRC Press, Cleveland, OH (1988).Google Scholar
  64. 64.
    R. E. Wyza, A. E. Desouza, and J. D. Isbister, in: Proceedings, Biological Treatment of Coals Workshop, Vienna, VA, July, p. 119 (1987).Google Scholar
  65. 65.
    P. R. Dugan, J. Wey, D. Stoner, and D. Quigley, in: Resources, Conservation and Recycling, Elsevier (1990).Google Scholar
  66. 66.
    G. W. Strandberg and S. N. Lewis, J. Indust. Microbiol. 1, 371 (1987).CrossRefGoogle Scholar
  67. 67.
    B. W. Wilson and M. S. Cohen, Proceedings: First Annual Workshop on Biologic Processing of Coals, Electric Power Research Institute, Monterey, CA, February (1987).Google Scholar
  68. 68.
    L. Wondrack, M. Szanto, and W. A. Wood, Appl. Biochem. Biotech. 20/21, 765 (1989).Google Scholar
  69. 69.
    E. Kern, in: Proceedings: First Annual Workshop on Biologic Processing of Coals, Electric Power Research Institute, Monterey, CA, February, Ch. 12, p. 13 (1987).Google Scholar
  70. 70.
    J. L. Gaddy, in: Proceedings: Biological Treatment of Coals Workshop, Herndon, VA, July, p. 194 (1986).Google Scholar
  71. 71.
    E. C. Clausen and J. L. Gaddy, in: Proceedings: Biological Processing of Coals Workshop, Vienna, VA, August, p. 89 (1987).Google Scholar
  72. 72.
    J. L. Vega, S. Prieto, B. B. Elmore, E. C. Clausen, and J. L. Gaddy, Appl. Biochem. Biotech. 20/21, 781 (1989).Google Scholar
  73. 73.
    J. Aislabie and R. M. Atlas, Appl. Biochem. Biotech. 20 /21, 799 (1989).CrossRefGoogle Scholar
  74. 74.
    US Department of Energy, in: Federal Oil Research: A Strategy for Maximizing the Productivity of Known US Oil, NTIS-PR-360, August (1989).Google Scholar
  75. 75.
    R. J. Smith and A. G. Collins, in: Microbes and Oil Recovery, Vol. 1, International Bioresources Journal (J. E. Zajic and E. C. Donaldson, eds.), Bioresources Publishers, El Paso, TX, p. 1 (1985).Google Scholar
  76. 76.
    J. E. Zajic, A. Gurrola, and J. Mueler, in: Microbes and Oil Recovery, Vol. 1, International Bioresources Journal (J. E. Zajic and E. C. Donaldson, eds.), Bioresources Publishers, El Paso, TX, p. 151 (1985).Google Scholar
  77. 77.
    W. R. Finnerty, M. E. Singer, F. Ohene, and H. Attaway, in: Microbes and Oil Recovery, Vol. 1, International Bioresources Journal (J. E. Zajic and E. C. Donaldson, eds.), Bioresources Publishers, El Paso, TX, p. 276 (1985).Google Scholar
  78. 78.
    W. R. Finnerty, Applications of Microbial Processes to Viscosity Reduction of Heavy Crude Oil—Final report, US Department of Energy, Bartlesville, OK, DOE/BC/10507–41, May (1987).Google Scholar
  79. 79.
    V. Moses and D. G. Springham, in: Bacteria and the Enhancement of Oil Recovery, Elsevier, Barking Essex, England (1982).Google Scholar
  80. 80.
    D. O. Hitzman, in: Proceedings of the 1982 International Conference on Microbial-Enhanced Oil Recovery, Afton, OK, DOE Conf-8205140, p. 162, May (1982).Google Scholar
  81. 81.
    R. S. Bryant, T. E. Burchfield, D. M. Dennis, and D. O. Hitzman, paper at the SPE/DOE 6th International Symposium on Enhanced Oil Recovery, Tulsa, OK, SPE-17341, April (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Michael E. McIlwain
    • 1
  • Patrick R. Dugan
    • 1
  1. 1.Center for Bioprocessing and Biotechnology Group, Idaho National Engineering LaboratoryEG & G Idaho, Inc.Idaho FallsUSA

Personalised recommendations