Biocatalysts for the Synthesis and Modification of Biopolymers

  • Robert J. Linhardt
  • Ali Al-Hakim
Part of the Topics in Applied Chemistry book series (TAPP)


Biopolymers are polymers that are biosynthesized from monomeric building blocks. Although biopolymers have been used for many years by the food, pharmaceutical, and specialty chemical industries, they have recently taken on increasing industrial importance often for novel applications.1–4 The heightened interest in these materials has primarily been the result of new biotechnological methods5–7 which have given industry access to large quantities of highly-pure biopolymers of various structures representing both natural and nonnatural products.


Chemical Synthesis Enzymatic Synthesis Polymer Resin Uridine Diphosphate Amino Acid Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Marshak and D. T. Liu, eds., Therapeutic Peptides and Proteins: Assessing New Technologies, Banbury Reports # 29, Cold Spring Harbor, 1988.Google Scholar
  2. 2.
    L. B. Jaques, Science 206, 528 (1979).Google Scholar
  3. 3.
    B. Casu, Adv. Carbohydr. Chem. Biochem. 43, 51 (1985).PubMedGoogle Scholar
  4. 4.
    J. F. Kennedy and C. A. White, Bioactive Carbohydrates, Ellis Harwood, New York 1983.Google Scholar
  5. 5.
    W. V. Grossman and A. K. Moldave, Recombinant DNA Technology, Academic Press, London (1989).Google Scholar
  6. 6.
    J. F. Kennedy, Enzyme Technology, VCH Verlagsgesellschaft (1987).Google Scholar
  7. 7.
    C. Laone, J. Tramper, and M. D. Lilly, eds., Biocatalysis in Organic Media, Elsevier, Amsterdam (1987).Google Scholar
  8. 8.
    R. J. Linhardt and D. Loganathan, in: Biomimetic Polymers ( G. Gebelein, ed.), Plenum Press, New York (1990).Google Scholar
  9. 9.
    D. J. Watson, The DNA Story, W. H. Freeman and Co., San Francisco (1981).Google Scholar
  10. 10.
    A. J. Zang and J. R. Cech, Science 231, 470 (1986).Google Scholar
  11. 11.
    F. M. Ansbel, R. Kingston, D. Moore, J. Seidman, J. Smith, and K. Struhl, eds., Current Protocol in Molecular Biology, Wiley/Green, New York (1987).Google Scholar
  12. 12.
    W. E. Cohen and L. Moldave, eds., Advances in Nucleic Acid Research and Molecular Biology, New York (1989).Google Scholar
  13. 13.
    M. H. Carthers, Science 230, 281 (1985).Google Scholar
  14. 14.
    K. G. Nilsson, TIBTECH 6, 256 (1988).Google Scholar
  15. 15.
    H. D. Jakubke, P. Kuhl, and A. Könnecke, Angew. Chem. Int. Ed. Engl. 24, 85 (1985).Google Scholar
  16. 16.
    A. Zaks, M. Empie, and A. Gross, TIBTECH 6, 272 (1988).Google Scholar
  17. 17.
    G. F. Bickerstaff, Enzymes in Industry and Medicine, E. Arnold, ed., (1987).Google Scholar
  18. 18.
    T. J. Ahern, J. I. Casal, G. A. Petsko, and A. M. Klibanov, Proc. Natl. Acad. Sci. USA 84, 675 (1987).PubMedGoogle Scholar
  19. 19.
    C.-H. Wong, Science 244, 1145 (1989).PubMedGoogle Scholar
  20. 20.
    G. M. Whitesides and C.-H. Wong, Angew. Chem. Int. Ed. Engl. 24, 617 (1985).Google Scholar
  21. 21.
    J. S. Dordick, Enzyme Microb. Technol. 11, 194 (1989).Google Scholar
  22. 22.
    J. S. Deetz and J. D. Rozzell, TIBTECH 6, 15 (1988).Google Scholar
  23. 23.
    P. J. Lea, Int. Rev. Biochem. 18, 79 (1978).Google Scholar
  24. 24.
    H. R. V. Arnstein, Int. Rev. Science, Biochem. Series, Vol. 7, Butterworths, London (1975).Google Scholar
  25. 25.
    I. K. Inoye and K. Wautab, J. Chem. Soc., Perkin. Trans, 1905 (1977).Google Scholar
  26. 26.
    C. Sheehan and G. P. Hess, J. Am. Chem. Soc. 77, 1067 (1955).Google Scholar
  27. 27.
    G. W. Anderson, J. E. Zimmerman, and F. M. Callahan, J. Am. Chem. Soc. 89, 178 (1967).PubMedGoogle Scholar
  28. 28.
    K. Morihara and T. Oka, Biochem. J. 163, 531 (1977).PubMedGoogle Scholar
  29. 29.
    H. D. Law, The Organic Chemistry of Peptides, Interscience, Wiley, London (1974).Google Scholar
  30. 30.
    F. Weygand and E. Csendes, Angew. Chem. 64, 136 (1952).Google Scholar
  31. 31.
    R. Camble, R. Garner, and G. T. Young, Nature 217, 247 (1967).Google Scholar
  32. 32.
    D. F. Elliot and D. Morris, Chimia 14, 373 (1960).Google Scholar
  33. 33.
    B. Iselin, Helv. Chim. Acta 45, 1510 (1962).Google Scholar
  34. 34.
    M. Mutter and E. Bayer, Nature 237, 512 (1972).PubMedGoogle Scholar
  35. 35.
    S. B. H. Kent and R. B. Merrifield, Peptides, Brunfeldt, Copenhagen (1981).Google Scholar
  36. 36.
    J. M. Stewart and J. D. Young, Solid-Phase Peptide Synthesis, Freeman, San Francisco (1969).Google Scholar
  37. 37.
    R. Arnon, in: Immunochemistry of Viruses (Van Regenmortel and A. R. Neurath, eds. ), Elsevier (1985).Google Scholar
  38. 38.
    R. Amon, TIBS 11, 521 (1986).Google Scholar
  39. 39.
    R. C. Kennedy, R. D. Hendel, I. Paoletti, J. S. Allen, T. H. Lee, M. Essex, and G. R. Dreesman, Science 231, 1551 (1986).Google Scholar
  40. 40.
    J. D. Glass, Enzyme Microb. Technol. 3, 2 (1981).Google Scholar
  41. J. S. Fruton, Adv. in Enzymol. 53,239 (1982).Google Scholar
  42. 42.
    H. D. Jakubke, P. Kuh., and A. Könnecke, Angew. Chem. Int. Ed. Eng. 24, 85 (1985).Google Scholar
  43. 43.
    K. Morihara, TIBTECH 5, 164 (1987).Google Scholar
  44. 44.
    M. Homandberg, J. A. Mattis, and M. Laskowski, Biochemistry 17, 5220 (1978).PubMedGoogle Scholar
  45. 45.
    I. M. Chaiken and A. Komoriya, TIBS 3, 269 (1978).Google Scholar
  46. 46.
    E. Scoffone, R. Racchi, F. Marchiori, L. Moroder, A. Marzotto, and A. M. Tamburro, J. Am. Chem. Soc. 89, 5490 (1967).Google Scholar
  47. 47.
    D. E. Harris and R. E. Offord, Biochem. J. 161, 21 (1977).PubMedGoogle Scholar
  48. 48.
    F. Borras and R. E. Offord, Nature 227, 716 (1970).PubMedGoogle Scholar
  49. 49.
    C. H. Li, J. Blaker, and T. Hayashido, Biochem. Biophys. Res. Commun. 82, 217 (1978).PubMedGoogle Scholar
  50. 50.
    M. Pandin, E. A. Paldon, C. Bello, and I. M. Chaiken, Peptides, Université de Bruxelles (1976).Google Scholar
  51. 51.
    Y. Isowa, M. Ohmori, and K. Mori, US Patent 4, 436, 925 (1984).Google Scholar
  52. 52.
    K. Oyama, S. Nishimura, Y. Nonaka, K. Kihara, and T. Hashimoto, J. Org. Chem. 46, 5241 (1981).Google Scholar
  53. 53.
    R. Saltman, D. Vlach, and P. L. Luisi, Biopolymers 16, 631 (1977).PubMedGoogle Scholar
  54. 54.
    M. Bergmann and H. Frankel-Conrat, J. Biol. Chem. 119, 707 (1937).Google Scholar
  55. R. W. Sealock and M. Laskowski, Jr., Biochemistry 8, 3703 (1969).PubMedGoogle Scholar
  56. 56.
    M. Homandberg, J. A. Mattis, and M. Laskowski, Jr., Biochemistry 17, 5220 (1978).PubMedGoogle Scholar
  57. 57.
    K. Inouye, K. Wantabe, K. Morihara, Y. Fochino, T. Kanyo, J. Emuro, and S. Sakakibara, J. Am. Chem. Soc. 101, 751 (1979).Google Scholar
  58. 58.
    A. Jonezyk and G. H. Gattner, Hoppe Seyler’s Z. Physiol. Chem. 362, 1591 (1981).Google Scholar
  59. 59.
    C. F. Barbas, J. R. Matos, J. Blair-West, and C.-H. Wang, J. Am. Chem. Soc. 110, 5162 (1988).Google Scholar
  60. 60.
    I. K. Bratovanova, I. B. Stoineva, and D. D. Petkov, Tetrahedron 44, 3666 (1988).Google Scholar
  61. 61.
    J. Blair-West and C.-H. Wong, Tetrahedron Lett. 28, 1629 (1987).Google Scholar
  62. 62.
    A. L. Margolin and A. M. Klibanov, J. Am. Chem. Soc. 109, 3802 (1987).Google Scholar
  63. 63.
    T. Nakatsuka, T. Sasaki, and E. T. Kaiser, J. Am. Chem. Soc. 109, 3808 (1987).Google Scholar
  64. 64.
    J. Blair-West and C.-H. Wong, J. Org. Chem. 51, 2728 (1986).Google Scholar
  65. 65.
    G. Ashwell and E. F. Newfeld, Cell 12, 619 (1977).Google Scholar
  66. 66.
    K. B. Lee, D. Loganathan, Z. M. Merchant, and R. J. Linhardt, Appl. Biochem. and Biotechnol. 53, 273 (1990).Google Scholar
  67. 67.
    R. W. Stoddart, The Biosynthesis of Polysaccharides, Macmillan, New York (1984).Google Scholar
  68. 68.
    R. W. Freisen and S. J. Danishefsky, J. Am. Chem. Soc. 111, 6656 (1989).Google Scholar
  69. 69.
    D. R. Mootoo, P. Konradsson, U. Udodong, and B. Fraser-Reid, J. Am. Chem. Soc. 110, 5583 (1988).Google Scholar
  70. 70.
    K. G. I. Nilsson, TIBTECH 6, 256 (1988).Google Scholar
  71. 71.
    C.-H. Wong, S. L. Haynie and G. W. Whiteside, J. Org. Chem. 47, 5416 (1982).Google Scholar
  72. 72.
    J. Thiem and W. Treder, Angew. Chem. 98, 1096 (1986).Google Scholar
  73. 73.
    T. A. Bayer, J. E. Sadler, J. I. Rearick, J. C. Paulson, and R. L. Hill, Adv. Enzymol. 52, 23 (1981).Google Scholar
  74. 74.
    P. R. Rosevear, H. A. Nunez, and R. Barker, Biochemistry 21, 1421 (1982).PubMedGoogle Scholar
  75. 75.
    V. Zehavi, S. Sadeh, and M. Herchman, Carbohydr. Res. 124, 23 (1983).Google Scholar
  76. 76.
    K. G. I. Nilsson, Carbohydr. Res. 188, 9 (1989).PubMedGoogle Scholar
  77. 77.
    K. Ajisaka, H. Fujimoto, and H. Nishida, Carbohydr. Res. 180, 35 (1988).Google Scholar
  78. 78.
    K. Ajisaka, H. Nishida, and H. Fujimoto, Biotechnol. Lett. 9, 243 (1987).Google Scholar
  79. 79.
    F. Milliken, P. Smith, C. S. Rose, and P. Cyorgy, J. Biol. Chem. 217, 79 (1955).Google Scholar
  80. 80.
    K. G. I. Nilsson, Carbohydr. Res. 167, 95 (1987).PubMedGoogle Scholar
  81. 81.
    A. Anon, Jpn. Bioind. Leu. 2, 9 (1985).Google Scholar
  82. 82.
    US Patent No.4, 521, 592 (1985).Google Scholar
  83. 83.
    N. K. Matherson and B. V. McCleary, in: The Polysaccharide (G. O. Aspinall, ed.), Vol. 3, Academic Press, New York (1985).Google Scholar
  84. 84.
    J. D. Gregory, T. C. Laurent, and L. Roden, J. Biol. Chem. 239, 3312 (1964).PubMedGoogle Scholar
  85. 85.
    R. J. Linhardt, C. L. Cooney, and P. M. Galliher, Appl. Biochem. and Biotechnol. 12, 135 (1986).Google Scholar
  86. 86.
    R. J. Linhardt, G. L. Fitzgerald, C. L. Cooney, and R. Langer, Biochim. Biophys. Acta 702, 197 (1982).PubMedGoogle Scholar
  87. 87.
    R. J. Linhardt, Z. M. Merchant, K. G. Rice, Y. S. Kim, G. L. Fitzgerald, A. C. Grant, and R. Langer, Biochemistry 24, 7805 (1985).PubMedGoogle Scholar
  88. 88.
    R. J. Linhardt, K. G. Rice, and D. M. Cohen, Biochemistry 28, 2888 (1989).PubMedGoogle Scholar
  89. 89.
    S. Ishii and T. Yokotsuka, J. Agr. Food Chem. 20, 787 (1972).Google Scholar
  90. 90.
    T. N. Wight and R. Mechem, eds., The Biology of the Extracellular Matrix: Proteoglycans, Academic Press, New York (1987).Google Scholar
  91. 91.
    K. G. Rice and R. J. Linhardt, Carbohydr. Res. 190, 219 (1989).PubMedGoogle Scholar
  92. 92.
    L. M. Mallis, H. M. Wang, D. K. Loganathan, and R. J. Linhardt, Anal. Chem. 61, 1453 (1989).PubMedGoogle Scholar
  93. 93.
    D. Loganathan, H. M. Wang, L. M. Mallis, and R. J. Linhardt, Biochemistry 29, 4362 (1990).PubMedGoogle Scholar
  94. 94.
    Y. S. Kim, Doctoral Thesis, University of Iowa, August 1988.Google Scholar
  95. 95.
    D. H. Atha, J. C. Lormeau, M. Petitou, and R. D. Rosenberg, Biochemistry 24, 6723 (1985).PubMedGoogle Scholar
  96. 96.
    P. Sinay, J. C. Jacquinet, M. Petitou, P. Duchaussoy, I. Lederman, J. Choay, and G. Torri, Carbohydr. Res. 132, C5 (1984).Google Scholar
  97. L. A. Loeb, P. K. Liu, and M. Fry, Prog. in Nucleic Acid Res. and Mol. Biol. 33,57 (1986).Google Scholar
  98. 98.
    A. Kornberg, DNA Replication, Freeman, San Francisco (1980).Google Scholar
  99. 99.
    K. Itakura, T. Hirose, R. Crea, A. D. Riggs, H. Heynker, F. Bolivar, and H. W. Boyer, Science 198, 1956 (1977).Google Scholar
  100. 100.
    P. Hodge and D. C. Sherrington, Polymer-Supported Reaction in Organic Synthesis, Wiley, New York (1980).Google Scholar
  101. 101.
    G. Alvarado-Urbina, G. M. Sathe, W. C. Liu, M. F. Gillen, and D. P. Duck, Science 214, 270 (1981).PubMedGoogle Scholar
  102. 102.
    M. J. Gair, H. W. Matthes, M. Singh, S. Sproat, and R. C. Titmas, Nucleic Acids Res., 10 1755 (1982).Google Scholar
  103. 103.
    B. C. Reese and R. Ubasawa, Nucleic Acids Res. 7, 5 (1980).Google Scholar
  104. 104.
    H. Koster, A. Stumpe, and A. Walter, Tetrahedron Lett. 24, 745 (1983).Google Scholar
  105. 105.
    V. Kohli, H. Blocker, and H. Koster, Tetrahedron Lett. 21, 2683 (1983).Google Scholar
  106. 106.
    M. D. Matteucci and M. D. Carthers, J. Am. Chem. Soc. 103, 3185 (1981).Google Scholar
  107. 107.
    H. G. Khorana, Science 203, 614 (1979).PubMedGoogle Scholar
  108. 108.
    J. E. Davis and H. G. Gassen, Angew. Chem. 22, 13 (1983).Google Scholar
  109. 109.
    K. Itakura and A. D. Riggs, Science 209, 140 (1980).Google Scholar
  110. 110.
    H. O. Smith and D. Nathans, J. Mol. Biol. 81, 419 (1973).PubMedGoogle Scholar
  111. 111.
    R. J. Roberts, Methods Enzymol. 65, 1 (1980).PubMedGoogle Scholar
  112. 112.
    E. K. Nichols, Human Gene Therapy, Harvard University Press, Cambridge (1988).Google Scholar
  113. 113.
    H. G. Gassen and A. Lang, eds., Chemical and Enzymatic Synthesis of Gene Fragments, Verlag Chemie, Weinheim (1982).Google Scholar
  114. 114.
    N. Symonds, in: Biochemistry of Nucleic Acids (K. Burton, ed.), Vol. 6, p. 165, Butterworths University Park Press, Baltimore (1974).Google Scholar
  115. 115.
    K. Itakura, T. Hirose, R. Crea, R. D. Riggs, and H. L. Hyneker, Science 198, 1056 (1977).PubMedGoogle Scholar
  116. 116.
    K. L. Agarwal, H. Buchi, M. H. Caruthers, N. Gupta, H. G. Khorana, K. Kleppe, A. Kumar, E. Ohtsuka, V. Rajbhandary, J. H. Van de Sande, V. Sfaramella, H. Weber, and T. Yamada, Nature 227, 27 (1970).PubMedGoogle Scholar
  117. 117.
    D. V. Goeddel, D. G. Kleid, F. Bolivar, H. I. Heynecker, D. C. Yamsura, R. Crea, T. Hirose, A. Kraszewski, K. Itakura, and A. D. Riggs, Pro. Natl. Acad. Sci. USA 76, 106 (1979).Google Scholar
  118. 118.
    E. Ohtsuka, Y. Taniyama, S. Iwai, K. Kitano, and S. Miyamoto, Nucleic Acids Res. 12, (1984).Google Scholar
  119. 119.
    M. D. Meacok, A. R. Heathcliffe, P. A. Meacock, W. Schuch, D. B. Scalon, T. C. Atkinson, C. R. Newton, and A. F. Markan, Nature 292, 756 (1981).Google Scholar
  120. 120.
    P. J. Romaniuk and O. C. Uhlenbeck, Methods in Enzymol. 100, 52 (1983).Google Scholar
  121. 121.
    R. C. Scarpulla, S. A. Narang, and R. Wu, Anal. Biochem., 121, 356 (1982).PubMedGoogle Scholar
  122. 122.
    J. J. Rossi, R. Kierzek, T. Huang, P. Walker, and K. Itakura, J. Biol. Chem. 257, 9226 (1982).PubMedGoogle Scholar
  123. 123.
    H. G. Khorana, K. L. Agarwal, P. Besmer, H. Buchi, M. H. Caruthers, P. J. Cashion, M. Fridkin, E. Jay, K. Kleppe, R. Kleppe, A. Kumar, P. C. Loewen, R. C. Miller, K. Minamoto, A. Panet, U. L. Rajbhandary, B. Ramamoorthy, T. Sekiya, T. Takeya, and H. van de Sande, J. Biol. Chem. 251, 565 (1976).PubMedGoogle Scholar
  124. 124.
    J. D. Windass, C. R. Newton, J. DeMaeyer-Guignard, V. E. Moore, and A. F. Markham, Nucleic Acids Res. 10, 6639 (1982).PubMedGoogle Scholar
  125. 125.
    P. L. Dettaseth, R. A. Goldman, C. L. Cech, and M. H. Caruthers, Nucleic Acids Res. 11, 773 (1983).Google Scholar
  126. 126.
    Shortle, D. DiMaio, and D. Nathans, Annu. Rev. Genet. 15, 265 (1981).PubMedGoogle Scholar
  127. 127.
    A. Sancar and G. B. Sancar, Annu. Rev. Biochem. 57, 29 (1988).PubMedGoogle Scholar
  128. 128.
    S. Neidle, Nature 283, 135 (1980).PubMedGoogle Scholar
  129. 129.
    W. A. Haseltine, M. K. Lo, and A. D. D’Andrea, Science 209, 929 (1980).PubMedGoogle Scholar
  130. 130.
    J. I. McInnes, S. Dalton, P. D. Vise, and A. J. Robins, Bio/Technology, 5 269 (1987).Google Scholar
  131. 131.
    A. H. Al-Hakim and R. Hull, Biochem. J. 251, 935 (1988).PubMedGoogle Scholar
  132. 132.
    R. Hull and A. H. Al-Hakim, Trends Biotech. 6, 213 (1988).Google Scholar
  133. 133.
    H. Yokota, K. Yokoo, and Y. Nagata, Biochim. Biophys. Acta 868, 45 (1986).PubMedGoogle Scholar
  134. 134.
    R. D. Langer, A. A. Waldrop, and D. C. Wark, Proc. Natl. Acad. Sci. USA 78, 6633 (1981).PubMedGoogle Scholar
  135. 135.
    A. H. Al-Hakim and R. Hull, Nucleic Acids Res. 4, 9965 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Robert J. Linhardt
    • 1
  • Ali Al-Hakim
    • 1
  1. 1.Division of Medicinal and Natural Products ChemistryCollege of Pharmacy, The University of IowaIowa CityUSA

Personalised recommendations