Enzymatic Catalysis in Bioseparations

  • David G. Rethwisch
  • Jonathan S. Dordick
Part of the Topics in Applied Chemistry book series (TAPP)


Organic acids and alcohols often constitute the active components of biologically functional molecules including pharmaceuticals, sweeteners, insectides, herbicides, and hormones.1–5 The large-scale production of these molecules generally requires efficient and selective methods of purification.6 Presently, individual peptides are separated from fermentation broths, blood serum, or chemical liquors by reverse phase or ion-exchange high-performance liquid chromatography (HPLC).7 Similarly, racemic mixtures of organic compounds are separated (i.e., optically resolved) into their optically active, biologically functional isomers using chiral-based chromatographic supports,8 or by reaction of the racemate with an optically active co-reactant to form diasteriomers which are more easily separated.9 While these methods have proved to be effective for laboratory-scale separations, they suffer from several limitations for commercial-scale applications. Chromatographic methods are expensive, solvent-intensive, and cannot be run in a continuous fashion. Diasteriomeric separations often require multiple recrystallization steps and consume expensive and often toxic coreactants. Thus, a need has developed for high-volume, low-cost processes for separations of organic acids and alcohols.


Liquid Membrane Mandelic Acid Optical Resolution Porcine Pancreatic Lipase Isopropyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. E. Hansen and B. A. Morgan, in: The Peptides: Analysis, Synthesis, Biology, ( S. Udenfriend and J. Meinhofer, eds.), Academic Press, Orlando (1984).Google Scholar
  2. 2.
    W. H. Pirkle and E. M. Doherty, J. Am. Chem. Soc. 111, 4113 (1989).CrossRefGoogle Scholar
  3. 3.
    E. T. Kaiser and F. J. Kezdy, Science 226, 249 (1984).CrossRefGoogle Scholar
  4. 4.
    S. Wolfe, A. L. Demain, S. E. Jensen, and D. W. S. Westlake, Science 226, 1386 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    A. R. Macrae, JAOCS 60, 243A (1983).Google Scholar
  6. 6.
    E. E. Bjurstrom, Chem. Eng. 92, 142 (1985).Google Scholar
  7. 7.
    J. M. Cooney, Bioleechnology 2, 41 (1984).Google Scholar
  8. 8.
    J. F. Bunnett and J. L. Marks, J. Amer. Chem. Soc. 74, 5893 (1952).CrossRefGoogle Scholar
  9. 9.
    J. Gal, LC-GC 5, 106 (1987).Google Scholar
  10. 10.
    J. S. Dordick, Enzyme Microb. Technol. 11, 194 (1989).Google Scholar
  11. 11.
    T. Uzuki, M. Takahashi, H. Yokomichi, and Y. Hawahara, US Patent 3, 907, 638 (1974).Google Scholar
  12. 12.
    C. Waundry, in: Enzymes as Catalysts in Organic Synthesis ( M. P. Schneider, ed.), NATO ASI series, D. Reidel Publishing, Dordrecht, Holland (1986).Google Scholar
  13. 13.
    W. J. Marshek and M. Miyano, Biochim. Biophys. Acta 316, 363 (1973).CrossRefGoogle Scholar
  14. 14.
    W. E. Ladner and G. M. Whitesides, J. Am. Chem. Soc. 106, 7250 (1984).Google Scholar
  15. 15.
    S. Miyano, K. Kawahara, Y. Inoue, and H. Hashimoto, Chem. Lett., 355 (1987).Google Scholar
  16. 16.
    A. Tanaka and S. Fukui, in: Enzymes and Immobilized Cells in Biotechnology, ( A. I. Laskin, ed.), Benjamin/Cummings Publishing, Menlo Park, CA (1985).Google Scholar
  17. 17.
    A. Klibanov, G. P. Samokhin, K. Martinek, and I. V. Berezin, Biotechnol. Bioeng. 19, 1351 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    B. H. J. Bielski and S. Freed, Biochim. Biophys. Acta 89, 314 (1964).PubMedGoogle Scholar
  19. 19.
    G. Langrand, J. Baratti, G. Buono, and C. Triantaphylides, Tetrahedron Lett. 27, 29 (1986).CrossRefGoogle Scholar
  20. 20.
    K. Yokozeki, S. Yamanaka, K. Takinami, Y. Hirose, A. Tanaka, K. Sonomoto, and S. Fukui, Eur. J. Appl. Microbiol. Biotechnol. 14, 1 (1982).CrossRefGoogle Scholar
  21. 21.
    G. Kirchner, M. P. Scollar, and A. M. Klibanov, J. Am. Chem. Soc. 107, 7072 (1985).CrossRefGoogle Scholar
  22. 22.
    A. M. Klibanov and G. Kirchner, US Patent 4, 601, 987 (1986).Google Scholar
  23. 23.
    C.-S. Chen, S.-H. Wu, G. Girdaukas, and C. J. Sih, J. Am. Chem. Soc. 109, 2812 (1987).CrossRefGoogle Scholar
  24. 24.
    R. Cremlyn, Pesticides, Preparation and Mode of Action, p. 143, Wiley, Chichester (1978).Google Scholar
  25. 25.
    D. Bianchi, P. Cesti, and E. Battistel, J. Org . Chem. 53, 5531 (1988).CrossRefGoogle Scholar
  26. 26.
    F. Francalanci, P. Cesti, W. Cabri, D. Bianchi, T. Martinengo, and M. Foa, J. Org . Chem. 52, 5079 (1987).CrossRefGoogle Scholar
  27. 27.
    Y.-F. Wang, J. J. Lalonde, M. Momongan, D. E. Bergbreiter, and C.-H. Wong, J. Am. Chem. Soc. 110, 7200 (1988).CrossRefGoogle Scholar
  28. 28.
    H. Kitaguchi, P. A. Fitzpatrick, J. E. Huber, and A. M. Klibanov, J. Am. Chem. Soc. 111, 3094 (1989).CrossRefGoogle Scholar
  29. 29.
    P. E. Sonnet, J. Org . Chem. 52, 3477 (1987).Google Scholar
  30. 30.
    H. S. Bevinakatti and R. V. Newadkar, Biotechnol. Lett. 11, 785 (1989).CrossRefGoogle Scholar
  31. 31.
    D. Gerlach and P. Schreier, Biocatalysis 2, 257 (1989).CrossRefGoogle Scholar
  32. 32.
    M. Inagaki, J. Hiratake, T. Nishioka, and J. Oda, Agric. Biol. Chem. 53, 1879 (1989).CrossRefGoogle Scholar
  33. 33.
    M. D. Lilly, J. Chem. Tech. Biotechnol. 32, 162 (1982).Google Scholar
  34. 34.
    G. Carrea, Trends Biotechnol. 2, 102 (1984).CrossRefGoogle Scholar
  35. 35.
    L. E. S. Brink and J. Tramper, Biotech. Bioeng. 27, 1258 (1985).CrossRefGoogle Scholar
  36. 36.
    B. Cambou and A. M. Klibanov, Biotech. Bioeng. 26, 1449 (1984).CrossRefGoogle Scholar
  37. 37.
    R. L. Bratzler, Proc. World Biotech. Report, Vol. 1, p. 23 (1987).Google Scholar
  38. 38.
    S. L. Matson, US Patent 4, 800, 162 (1989).Google Scholar
  39. 39.
    S. L. Matson, US Patent 4, 795, 704 (1989).Google Scholar
  40. 40.
    S. L. Matson and J. A. Quinn, Ann. N.Y. Acad. Sci. 469, 152 (1986).CrossRefGoogle Scholar
  41. 41.
    I. Chibata, T. Tosa, and I. Takata, Trends Biotechnol 1, 9 (1983).CrossRefGoogle Scholar
  42. 42.
    T. L. Donaldson and J. A. Quinn, Chem. Eng. Sci. 30, 103 (1975).CrossRefGoogle Scholar
  43. 43.
    S. R. Suchdeo and J. S. Schultz, Biochim. Biophys. Acta 352, 412 (1974).PubMedCrossRefGoogle Scholar
  44. 44.
    D. G. Rethwisch, G. Yi, A. Subramanian, and J. S. Dordick, J. Am. Chem. Soc. 112, 1649 (1990).CrossRefGoogle Scholar
  45. 45.
    B. Bjorgstrom and H. L. Brockman, eds., Lipases, Elsevier, Amsterdam (1984).Google Scholar
  46. 46.
    A. Sengupta, R. Basu, and K. K. Sirkar, AiChE Journal 34, 1698 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David G. Rethwisch
    • 1
  • Jonathan S. Dordick
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityUSA

Personalised recommendations