Protein Stabilization

  • Susan J. Tomazic
Chapter
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

For many industrial processes, biocatalysts provide a desirable specificity not possible with either the analogous uncatalyzed chemical reaction or a catalyzed nonenzymatic counterpart. For example, in the conversion of starch to high-fructose corn syrup, α-amylase consistantly yields a product containing 3–5% more dextrose than simple acid hydrolysis, with less impurities and by-products.1 Similarly, rennin (chymosin) is used in the making of cheese because it will specifically cleave only the κ-casein component in milk thus initiating the clotting process.2 The use of biocatalysts however remains limited, because while many applications require harsh conditions (such as temperatures greater than 50 °C) to ensure high productivity, high solubility of substrates, and reduced microbial contamination, these conditions often result in an irreversible inactivation of the enzyme.3 Hence repetitive, time-consuming additions of the costly catalyst are necessary to maintain the process. This dilemma has compelled scientists to search for means to stabilize biocatalysts against irreversible inactivation.

Keywords

Chemical Modification Native Enzyme Triose Phosphate Isomerase Thermostable Enzyme Thermophilic Microorganism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. Blanchard and E. O. Geiger, Sugar Technol. Rev. 11, 1 (1984).Google Scholar
  2. 2.
    V. S. Malik, in: Applied Microbiology (S. L. Neidleman, ed.), Vol. 34, p. 263, Academic Press, New York (1989).Google Scholar
  3. 3.
    A. M. Klibanov, Adv. Appl. MicrobioL 29, 1 (1983).Google Scholar
  4. 4.
    R. D. Schmid, in: Advances in Biochemical Engineering (T. K. Ghose, A. Fechter, and N. Blakebragh, eds.), Vol. 12, p. 41, Springer-Verlag, Berlin (1979).Google Scholar
  5. 5.
    T. J. Ahern and A. M. Klibanov, in: Protein Engineering ( D. L. Oxender and C. F. Fox, eds.), p. 213, Alan R. Liss, New York (1987).Google Scholar
  6. 6.
    H. Neurath, J. P. Putnam, F. W. Putnam, and J. O. Erikson, Chem. Rev. 34, 157 (1944).CrossRefGoogle Scholar
  7. 7.
    M. L. Anson, Adv. Prot. Chem. 2, 361 (1945).Google Scholar
  8. 8.
    W. Kauzmann, Adv. Prot. Chem. 14, 1 (1959).Google Scholar
  9. 9.
    R. Lumry and H. Eyring, J. Phys. Chem. 58, 110 (1954).CrossRefGoogle Scholar
  10. 10.
    L. F. McCoy, Jr. and K. P. Wong, Biochem. 20, 3062 (1981).Google Scholar
  11. 11.
    A. M. Klibanov and V. V. Mozhaev, Biochem. Biophys. Res. Commun. 83, 1012 (1978).CrossRefGoogle Scholar
  12. 12.
    K. Martinek, V. V. Mozhaev, and I. V. Berezin, Biochim. Biophys. Acta 615, 426 (1980).CrossRefGoogle Scholar
  13. 13.
    S. J. Tomazic and A. M. Klibanov, J. Biol. Chem. 263, 3086 (1988).PubMedGoogle Scholar
  14. 14.
    N. Gottchalk and R. Jaenicke, Biotech. Appl. Biochem. 9, 389 (1987).Google Scholar
  15. 15.
    H. Gorisch and F. Lingens, J. BacterioL 114, 645 (1973).PubMedGoogle Scholar
  16. 16.
    F. S. Steven, M. M. Griffin, and R. H. Smith, Eur. J. Biochim. 119, 75 (1981).CrossRefGoogle Scholar
  17. 17.
    S. E. Zale and A. M. Klibanov, Biochem. 25, 5432 (1986).CrossRefGoogle Scholar
  18. 18.
    D. M. Kuhn, B. Ruskin, and W. Lovenberg, J. Biol. Chem. 255, 4137 (1980).PubMedGoogle Scholar
  19. 19.
    T. J. Ahern and A. M. Klibanov, Science 228, 1280 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Johnson and T. L. Whateley, Biochem. J. 193, 285 (1981).PubMedGoogle Scholar
  21. 21.
    Y. M. Torchinski, Suifhydryl and Disulfides in Proteins, Consultants Bureau, New York (1974).Google Scholar
  22. 22.
    G. E. Pollock and L. H. Frommhagen, Anal. Biochem. 24, 18 (1968).PubMedCrossRefGoogle Scholar
  23. 23.
    Z. Bohak, J. Biol. Chem. 239, 2878 (1964).PubMedGoogle Scholar
  24. 24.
    S. E. Zale and A. M. Klibanov, Biotech. and Bioeng. 25, 2221 (1983).CrossRefGoogle Scholar
  25. 25.
    C. Tanford, Adv. Protein Chem. 23, 121 (1968).PubMedCrossRefGoogle Scholar
  26. 26.
    W. Kauzmann, Adv. Protein Chem. 14, 1 (1959).PubMedCrossRefGoogle Scholar
  27. 27.
    S. Lapanje, in: Physiochemical Aspects of Protein Denaturation, Wiley, New York (1978).Google Scholar
  28. 28.
    R. Jaenicke, Ann. Rev. Biophys. Bioeng. 10, 1 (1981).CrossRefGoogle Scholar
  29. 29.
    G. E. Schultz and R. H. Schirmer, in: Principles of Protein Structure, Ch. 3, Springer-Verlag, New York (1979).CrossRefGoogle Scholar
  30. 30.
    S. J. Tomazic and A. M. Klibanov, J. Biol. Chem. 263, 3092 (1988).PubMedGoogle Scholar
  31. 31.
    T. D. Brock, Science 230, 132 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    P. H. Von Hippel and K. Y. Wong, Science 145, 577 (1964).CrossRefGoogle Scholar
  33. 33.
    H. B. Bull and K. Breese, Arch. Biochem. Biophys. 202, 116 (1980).PubMedCrossRefGoogle Scholar
  34. 34.
    S. Damodaran and J. E. Kinsella, J. Biol. Chem. 256, 3394 (1981).PubMedGoogle Scholar
  35. 35.
    F. W. Dahlquist, L. W. Long, and W. L. Bigbee, Biochem. 15, 1103 (1976).CrossRefGoogle Scholar
  36. 36.
    A. Fontana, E. Boccu, and F. M. Veronese, in: Enzymes and Proteins from Thermophilic Microorganisms ( H. Zuber, ed.), p. 55, Birkhauser Verlag, Basel (1976).CrossRefGoogle Scholar
  37. 37.
    W. Heinen and A. M. Lauwers, in: Enzymes and Proteins from Thermophilic Microorganisms ( H. Zuber, ed.), p. 77, Birkhauser Verlag, Basel (1976).CrossRefGoogle Scholar
  38. 38.
    S. Y. Gerlsma, J. Biol. Chem. 243, 957 (1968).PubMedGoogle Scholar
  39. 39.
    R. F. Bernier and F. J. Stutzenberger, J. Biotech. 7, 293 (1983).CrossRefGoogle Scholar
  40. 40.
    K. Yasumatsu, M. Ohno, C. Matsumuro, and H. Shimazono, Agr. BioL Chem. 29, 665 (1965).CrossRefGoogle Scholar
  41. 41.
    C. O’Fagain, H. Sheehan, R. O’Kennedy, and C. Kilty, Proc. Biochem. 23, 199 (1988).Google Scholar
  42. 42.
    J. C. Lee and S. N. Timasheff, J. Biol. Chem. 256, 7193 (1981).PubMedGoogle Scholar
  43. 43.
    C. O’Sullivan and F. W. Thompson, J. Chem. Soc. 57, 834 (1890).CrossRefGoogle Scholar
  44. 43.
    K. Gekko and S. N. Timasheff, Biochem. 20, 4667 (1981).CrossRefGoogle Scholar
  45. 44.
    J. F. Back, D. Oakenfull, and M. B. Smith, Biochem. 18, 5191 (1979).CrossRefGoogle Scholar
  46. 45.
    R. Lumry and H. Eyring, J. Phys. Chem. 58, 110 (1954).CrossRefGoogle Scholar
  47. 46.
    D. J. Merkler, K. Strikumar, and F. C. Wedler, Biochem. 26, 7805 (1987).CrossRefGoogle Scholar
  48. 47.
    A. Zaks and A. M. Klibanov, Science 224, 1249 (1984).PubMedCrossRefGoogle Scholar
  49. 48.
    A. Zaks and A. J. Russell, J. Biotech. 8, 259 (1988).CrossRefGoogle Scholar
  50. 49.
    A. L. Tappel, CA 75, 1068007 (1971).Google Scholar
  51. 50.
    M. F. Perutz, Science 201, 1187 (1978).PubMedCrossRefGoogle Scholar
  52. 51.
    H. Zuber, in: Biochemistry of Thermophily ( S. M. Friedman, ed.), p. 267, Academic Press, New York (1978).CrossRefGoogle Scholar
  53. 52.
    S. C. Fujita, T. Oshima, and K. Imahori, Eur. J. Biochem. 64, 57 (1976).PubMedCrossRefGoogle Scholar
  54. 53.
    C. Ruegg, D. Amer, and K. Lerch, J. Biol. Chem. 257, 6420 (1982).PubMedGoogle Scholar
  55. 54.
    J. E. Walker, A. J. Wonacott, and I. J. Harris, Eur. J. Biochem. 108, 581 (1980).PubMedCrossRefGoogle Scholar
  56. 55.
    J. L. Finney, B. J. Gettatly, I. C. Golton, and J. Goodfellow, Biophys. J. 32, 17 (1980).PubMedCrossRefGoogle Scholar
  57. 56.
    N. Minotani, T. Sekiguchi, J. G. Bautista, and Y. Nosoh, Biochim. Biophys. Acta 581, 334 (1979).CrossRefGoogle Scholar
  58. 57.
    F. Tuengler and G. Pfleiderer, Biochim. Biophys. Acta 284, 1 (1977).Google Scholar
  59. 58.
    R. Singleton and R. E. Amelunxen, Bacteriol. Rev. 37, 320 (1973).PubMedGoogle Scholar
  60. 59.
    P. Argos, M. G. Rossman, U. M. Girau, G. Zuber, G. Frank, and J. D. Tratschin, Biochem. 18, 5698 (1979).CrossRefGoogle Scholar
  61. 60.
    A. R. Ferst, in: Enzyme Structure and Mechanism, W. H. Freeman, England (1977).Google Scholar
  62. 61.
    H. A. Scheraga, in: The Proteins (H. Neurath, ed.), Vol. 1, p. 477, Academic Press, New York (1963).Google Scholar
  63. 62.
    T. E. Creighton, in: Proteins, Structure and ‘vfolecular Properties, W. H. Freeman and Company, New York (1984).Google Scholar
  64. 63.
    V. V. Mozhaev, V. A. Siksnis, N. S. Melik-Nubarov, N. Z. Galkantaite, G. J. Denis, E. P. Butkus, B. Y. Zaslaysky, N. M. Mestechkina, and K. Martinek, Eur. J. Biochem. 173, 147 (1976).CrossRefGoogle Scholar
  65. 64.
    M. Mosbach, Methods Enzymol. 44, 453 (1976).PubMedCrossRefGoogle Scholar
  66. 65.
    G. P. Royer, Catal. Rev. 22, 29 (1980).CrossRefGoogle Scholar
  67. 66.
    A. M. Klibanov, Anal. Biochem. 93, 1 (1979).PubMedCrossRefGoogle Scholar
  68. 67.
    V. V. Mozhaev and K. Martinek, Enzyme Microb. Technol. 6, 50 (1984).CrossRefGoogle Scholar
  69. 68.
    P. Germain, T. Stagmolen, and R. R. Chichton, Biotech. Bioeng. 33, 563 (1989).CrossRefGoogle Scholar
  70. 69.
    A. Pollak, H. Blumefeld, M. Wax, R. L. Baughn, and G. M. Whitesides, J. Am. Chem. Soc. 102, 6324 (1980).CrossRefGoogle Scholar
  71. 70.
    K. Martinek, A. M. Klibanov, V. S. Goldmacher, and I. V. Berezin, Biochim. Biophys. Acta 485, 1 (1977).CrossRefGoogle Scholar
  72. 71.
    J. O. Baker, K. K. Oh, K. Grohman, and M. E. Himmel, Biotech. Lett. 10, 325 (1988).CrossRefGoogle Scholar
  73. 72.
    O. R. Zaborski, in: Enzyme Engineering (E. K. Pye and L. B. Wingard, eds.), Vol. 2, p. 115, Plenum Press, New York (1973).Google Scholar
  74. 73.
    R. Reiner, H. U. Siebeneick, I. Christensen, and H. Doring, J. Mol. Catal. 2, 119 (1977).CrossRefGoogle Scholar
  75. 74.
    G. E. Means and R. E. Feeney, in: Chemical Modification of Proteins, Holden-Day, San Francisco (1971).Google Scholar
  76. 75.
    H. Fasold, J. Klappenberb, C. Meyer, and H. Remold, Angew. Chem. Int. Ed. Eng. 10, 854 (1971).Google Scholar
  77. 76.
    E. Dziemer-Gryszkiewz, A. V. Maksimenko, V. P. Torchilin, and W. S. Ostrowski, Biochem. Int. 6, 627 (1983).Google Scholar
  78. 77.
    V. P. Torchilin, V. S. Trubetskow, V. G. Omel’yanenko, and K. Martinek, J. Mol. Cat. 19, 291 (1983).CrossRefGoogle Scholar
  79. 78.
    B. Kuzulic, S. Barbaric, B. Ries, and P. Mildner, Biochem. Biophys. Res. Commun. 122, 1083 (1984).CrossRefGoogle Scholar
  80. 79.
    A. T. Profy and P. Schimmel, Prog. Nucleic Acid Res. Mol. Biol. 35, 1 (1988).Google Scholar
  81. 80.
    H. Liao, T. McKenzie, and R. Hageman, Proc. Natl. Acad. Sci. USA 83, 576 (1986).CrossRefGoogle Scholar
  82. 81.
    K. M. Ulmer, Science 219, 666 (1983).PubMedCrossRefGoogle Scholar
  83. 82.
    G. Winter, A. R. Fersht, A. Y. Wilkinson, M. Zoller, and M. Smith, Nature 299, 756 (1982).PubMedCrossRefGoogle Scholar
  84. 83.
    J. R. Roesser, M. S. Chorghade, and S. M. Hecht, Biochem. 25, 6361 (1986).CrossRefGoogle Scholar
  85. 84.
    C. J. Noren, S. J. Anthony-Cahill, M. C. Griffith, and P. G. Schultz, Science 244, 182 (1989).PubMedCrossRefGoogle Scholar
  86. 85.
    J. R. Knowles, Science 236, 1252 (1987).PubMedCrossRefGoogle Scholar
  87. 86.
    B. D. Davie, R. Dulbecco, H. N. Eisen, G. S. Ginsberg, and W. B. Wood, Jr., in: Microbiology ( M. McCarty, ed.), p. 254, Harper and Row, New York (1973).Google Scholar
  88. 87.
    Y. Makino, S. Negoro, I. Urabe, and H. Okada, J. Biol. Chem. 264, 6381 (1989).PubMedGoogle Scholar
  89. 88.
    A. L. Rollence, D. Filpula, M. W. Pantoliano, and P. N. Bryan, CRC Crit. Rev. Biotech. 8, 217 (1988).CrossRefGoogle Scholar
  90. 89.
    V. V. Mozhaev, I.V. Berezin, and K. Martinek, CRC Crit. Rev. Biochem. 23, 235 (1988).Google Scholar
  91. 90.
    K. Yutani, K. Ogasahara, Y. Sugino, and A. Matsushiro, Nature 267, 274 (1977).PubMedCrossRefGoogle Scholar
  92. 91.
    C. Mitchinson and R. L. Baldwin, Prot. Struct. Func. and Genet. 1, 23 (1986).CrossRefGoogle Scholar
  93. 92.
    M. H. Hecht, T. M. Sturtvant, and R. T. Sauer, Prot. Struct. Func. and Genet. 1, 43 (1986).CrossRefGoogle Scholar
  94. 93.
    C. G. Anfinsen and H. A. Scheraga, Adv. Prot. Chem. 29, 205 (1975).CrossRefGoogle Scholar
  95. 94.
    J. E. Villafranca, E. E. Howell, O. H. Voet, M. S. Strobel, R. C. Ogden, J. N. Abelson, and J. Kraut, Science 222, 782 (1983).PubMedCrossRefGoogle Scholar
  96. 95.
    L. J. Perry and R. Wetzel, Science 226, 555 (1984).PubMedCrossRefGoogle Scholar
  97. 96.
    M. W. Pantoliano, R. C. Ladner, P. N. Bryan, M. L. Rollence, J. F. Wood, and T. L. Poulos, Biochem. 26, 2077 (1987).CrossRefGoogle Scholar
  98. 97.
    J. E. Villafranca, E. H. Howell, S. J. Oatley, N. Xuong, and J. Kraut, Biochem. 26, 2182 (1987).CrossRefGoogle Scholar
  99. 98.
    D. B. Volkin and A. M. Klibanov, J. Biol. Chem. 262, 2945 (1987).PubMedGoogle Scholar
  100. 99.
    L. J. Perry and R. Wetzel, Biochem. 25, 733 (1986).CrossRefGoogle Scholar
  101. 100.
    M. W. Pantoliano, M. Whitlow, J. F. Wood, M. L. Rollence, B. C. Finzel, G. L. Gilliland, T. L. Poulos, and P. N. Bryan, Biochem. 27, 8311 (1988).CrossRefGoogle Scholar
  102. 101.
    D. A. Estell, T. P. Graycar, and J. A. Wells, J. Biol. Chem. 260, 6518 (1985).PubMedGoogle Scholar
  103. 102.
    T. J. Ahern, J. I. Casal, G. A. Petsko, and A. M. Klibanov, Proc. Natl. Acad. Sci. USA 84, 675 (1987).CrossRefGoogle Scholar
  104. 103.
    E. R. L. Gaughran, Bacteriol. Rev. 11, 189 (1947).PubMedGoogle Scholar
  105. 104.
    R. Singleton, Jr. and R. E. AmeIuxen, Bacteriol. Rev. 37, 320 (1973).Google Scholar
  106. 105.
    P. Argos, M. G. Rossman, U. M. Girau, H. Zuber, G. Frank, and J. D. Tratschin, Biochem. 18, 5698 (1979).CrossRefGoogle Scholar
  107. 106.
    A. Fonatana, Biophys. Chem. 29, 181 (1988).CrossRefGoogle Scholar
  108. 107.
    R. Jaenicke, Annu. Rev. Biophys. Bioeng. 10, 1 (1981).CrossRefGoogle Scholar
  109. 108.
    H. Zuber, in: Structural and Functional Aspects of Enzyme Catalysis ( H. Eggerer and R. Huber, eds.), p. 114, Springer-Verlag, Heidelberg (1981).CrossRefGoogle Scholar
  110. 109.
    D. Ringe and G. A. Petsko, Prog. Biophys. Mol. Biol. 45, 197 (1985).CrossRefGoogle Scholar
  111. 110.
    G. Caren, P. Fasella, and E. Grafton, CRC Crit. Rev. Biochem. 3, 141 (1975).CrossRefGoogle Scholar
  112. 111.
    A. Cooper, Sci. Prog. Oxford 66, 473 (1981).Google Scholar
  113. 112.
    E. Stillwagen and L. D. Barnes, in: Enzymes and Proteins from Thermophilic Microorganisms (H. Zuber, ed.), Exp. Suppl. 26, p. 223, Birkhauser Verlag, Basel (1976).CrossRefGoogle Scholar
  114. 113.
    M. Matsumura, S. Yasumura, and S. Aiba, Nature 323, 356 (1986).PubMedCrossRefGoogle Scholar
  115. 114.
    H. Freeze and T. D. Brock, J. Bacteriol. 101, 541 (1970).PubMedGoogle Scholar
  116. 115.
    T. K. Ng and W. R. Kenealy, in: General, Molecular and Applied Microbiology ( T. D. Brock, ed.), p. 197, Wiley, New York (1986).Google Scholar
  117. 116.
    C. J. McNeil and J. A. Spoors, Anal. Chem. 61, 25 (1989).PubMedCrossRefGoogle Scholar
  118. 117.
    J. L. Marx, Science 240, 1408 (1988).PubMedCrossRefGoogle Scholar
  119. 118.
    C. Blake and B. J. Gould, Analyst 109, 108 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Susan J. Tomazic
    • 1
  1. 1.Department 90UAbbott LaboratoriesAbbott ParkUSA

Personalised recommendations