An Introduction to Industrial Biocatalysis

  • Jonathan S. Dordick
Part of the Topics in Applied Chemistry book series (TAPP)


Nature is extremely diverse in terms of the large number and many types of organic molecules required for life. This diversity is made possible solely due to the wide catalytic scope of enzymes. It is the ability to harness the catalytic power of enzymes and use it for the synthesis of commercially important products that represents the core technology of applied biocatalysis. This chapter provides an introduction into the field of applied biocatalysis. Specifically, the commercial use of biocatalysts in the food, medical (diagnostic), chemical, and pharmaceutical industries will be discussed along with the future potential for biocatalyst application in such areas. In addition, the advantages and disadvantages of using biocatalysts vs. chemical catalysts will be examined in order to rationalize the use of biocatalysts for processes that have traditionally been slow to utilize such a novel approach.


Formaldehyde Urea Purine Nucleoside Phosphorylase Glucose Isomerase Glycerol Kinase Sugar Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Whitesides and C.-H. Wong, Aldrichimica Acta 16, 27 (1983).Google Scholar
  2. 2.
    C. Walsh, Enzymatic Reaction Mechanisms, W. H. Freeman Co., San Francisco (1979).Google Scholar
  3. 3.
    H. S. Mosher and J. D. Morrison, Science 221, 1013 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    R. W. Maatman, CataL Rev. 8, 1 (1973).Google Scholar
  5. 5.
    A. J. Hacking, Economic Aspects of Biotechnology, p. 147, Cambridge University Press, Cambridge (1986).Google Scholar
  6. 6.
    Sigma Chemical Catalogue (1989).Google Scholar
  7. 7.
    M. Dixon and E. C. Webb, Enzymes, 3rd ed., Academic Press, New York (1979).Google Scholar
  8. 8.
    B. Borgstrom and H. L. Brockman, eds., Lipases, Elsevier, Amsterdam (1984).Google Scholar
  9. 9.
    E. M. Meijer, W. H. J. Boesten, A. E. Schoemaker, and J. A. M. Van Balken, in: Biocatalysis in Organic Synthesis ( J. Tramper, H. C. Van der Plas, and P. Linko, eds.), Elsevier, Amsterdam (1985).Google Scholar
  10. 10.
    A. Zaks and A. M. Klibanov, Proc. Natl. Acad. Sci. USA 82, 3192 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Ooshima, H. Mori, and Y. Harano, Biotechnol Lett. 7, 789 (1985).CrossRefGoogle Scholar
  12. 12.
    H. S. Mason, Adv. Enzymol. Relat. Subj. Biochem. 19, 79 (1957).Google Scholar
  13. 13.
    R. Z. Kazandjian and A. M. Klibanov, J. Am. Chem. Soc. 107, 5448 (1985).CrossRefGoogle Scholar
  14. 14.
    T. Godfrey and J. Reichelt, Industrial Enzymology, The Nature Press, New York (1983).Google Scholar
  15. 15.
    W. E. Goldstein, in: Basic Biotechnology ( J. Bu’Lock and B. Kristiansen, eds.), p. 385, Academic Press, London (1987).Google Scholar
  16. 16.
    S. H. Hemmingsen, Appl. Biochem. Biotechnol. 2, 157 (1979).Google Scholar
  17. 17.
    M. D. Lilly, Appl. Biochem. Biotechnol. 2, 1 (1979).Google Scholar
  18. 18.
    J. H. Miller and W. S. Reznikoff, eds., The Operon, 2nd ed., Cold Spring Harbor, New York (1980).Google Scholar
  19. 19.
    N. D. Davis and W. T. Blevins, in: Microbial Technology: Fermentation Technology (H. J. Peppler and D. Perlman, eds.), Vol. 2, 2nd ed., p. 303, Academic Press, New York (1979).Google Scholar
  20. 20.
    F. G. Priest, Aspects of Microbiology, Vol. 9, American Society for Microbiology, Washington (1984).Google Scholar
  21. 21.
    W. Crueger and A. Grueger, Biotechnology, A Textbook of Industrial Microbiology, Sinauer Assoc. Inc., Sunderland, MA (1984).Google Scholar
  22. 22.
    J. Berdy, Adv. Appl. Microbiol. 18, 309 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    A. T. Andrews, ed., Chemical Aspects of Food Enzymes, Royal Society of Chemistry, London (1987).Google Scholar
  24. 24.
    W. M. Fogarty, ed., Microbial Enzymes and Biotechnology, Applied Science, London (1983).Google Scholar
  25. 25.
    G. G. Guilbault, Analytical Uses of Immobilized Enzymes, Pekker, New York (1984).Google Scholar
  26. 26.
    J. B. Jones, in: Asymmetric Synthesis (J. D. Morrison, ed.), Academic Press, New York (1983).Google Scholar
  27. 27.
    J. D. Morrison, ed., Asymmetric Synthesis, Vols. 1–5,Academic Press, New York, (1983–1985).Google Scholar
  28. 28.
    J. S. Drdick, Enzyme Microb. Technol. 11, 194 (1989).CrossRefGoogle Scholar
  29. 29.
    A. M. Klibanov, Chemtech. 16, 354 (1986).Google Scholar
  30. 30.
    L. G. Butler, Enzyme Microb. Technol. 1, 253 (1979).CrossRefGoogle Scholar
  31. 31.
    M. D. Lilly, J. Chem. Tech. Biotechnol. 32, 162 (1982).Google Scholar
  32. 32.
    P. J. Hailing, Biotechnol. Adv. 5, 47 (1987).CrossRefGoogle Scholar
  33. 33.
    T. J. Ahern and A. M. Klibanov, in: Protein Engineering (D. L. Oxender and C. F. Fox, eds.), p. 213, Alan R. Liss, New York (1987).Google Scholar
  34. 34.
    R. M. Kelly and J. W. Deming, Biotechnol. Prog. 4, 47 (1988).CrossRefGoogle Scholar
  35. 35.
    R. D. Schmid, in: Advances in Biochemical Engineering (T. K. Ghose, A. Fiechter, and N. Blakebrough, eds.), Vol. 12, p. 41, Springer-Verlag, Berlin (1979).Google Scholar
  36. 36.
    T. E. Barman, Enzyme Handbook, Springer-Verlag, New York (1985).Google Scholar
  37. 37.
    M. V. Arbige and W. H. Pitcher, Trends Biotechnol. 7, 330 (1989).CrossRefGoogle Scholar
  38. 38.
    S. L. Matson and J. A. Quinn, Ann. NY Acad. Sci. 469, 152 (1986).CrossRefGoogle Scholar
  39. 39.
    D. G. Rethwisch, A. Subramanian, G. Yi, and J. S. Dordick, J. Am. Chem. Soc. 112, 1649 (1990).CrossRefGoogle Scholar
  40. 40.
    L. H. Posorske, J. Am. Oil Chem. Soc. 61, 1758 (1984).CrossRefGoogle Scholar
  41. 41.
    A. Neuberger and K. Brocklehurst, eds., Hydrolytic Enzymes, Elsevier, Amsterdam (1987).Google Scholar
  42. 42.
    K. Inouye, K. Watanabe, K. Morihara, Y. Tochino, T. Kanaya, J. Emura, and S. Sakakibara, J. Am. Chem. Soc. 101, 751 (1979).CrossRefGoogle Scholar
  43. 43.
    B. C. Saunders, A. G. Holmes-Siedle, and B. P. Stark, Peroxidase, Butterworths, Washington (1964).Google Scholar
  44. 44.
    J. S. Dordick, M. A. Marietta, and A. M. Klibanov, Biotechnol. Bioeng. 30, 31 (1987).PubMedCrossRefGoogle Scholar
  45. 45.
    H. Musso, in: Oxidative Couplity of Phenols (W. I. Taylor and A. R. Battersby, eds.), p. 1 (1967).Google Scholar
  46. 46.
    F. Notheisz, M. Bartok, and V. Remport, Acta Phys. Chem. 18, 89 (1972).Google Scholar
  47. 47.
    F. Desgupta, G. W. Hay, N. A. Szarek, and W. L. Schilling, Carbohydr. Res. 114, 153 (1983).CrossRefGoogle Scholar
  48. 48.
    A. H. Haines, Adv. Carbohydr. Chem. Biochem. 39, 13 (1981).CrossRefGoogle Scholar
  49. 49.
    A. Zuckerberg, A. Diver, Z. Peeri, D. L. Gutnick, and E. Rosenberg, Appl. Environ. Microbiol. 37, 414 (1979).PubMedGoogle Scholar
  50. 50.
    D. L. Marshall and L. B. Bullerman, J. Food Sci. 51, 468 (1986).CrossRefGoogle Scholar
  51. 51.
    A. Kato and K. Arima, Biochem. Biophys. Res. Commun. 42, 596 (1971).PubMedCrossRefGoogle Scholar
  52. 52.
    M. Therisod and A. M. Klibanov, J. Am. Chem. Soc. 108, 5638 (1986).CrossRefGoogle Scholar
  53. 53.
    M. Therisod and A. M. Klibanov, J. Am. Chem. Soc. 109, 3977 (1987).CrossRefGoogle Scholar
  54. 54.
    J. S. Dordick, A. J. Hacking, and R. A. Khan, UK Patent Application No. 8822673 (1988).Google Scholar
  55. 55.
    D. Cullen, G. L. Gray, L. J. Wilson, K. J. Hayenga, M. H. Lamsa, M. W. Rey, S. Norton, and R. M. Berka, BiolTechnology 5, 369 (1987).Google Scholar
  56. 56.
    M. Tien and C.-P. D. Tu, Nature 326, 520 (1987).PubMedCrossRefGoogle Scholar
  57. 57.
    E. L. F. Holzbaur and M. Tien, Biochem. Biophys. Res. Commun. 155, 626 (1988).PubMedCrossRefGoogle Scholar
  58. 58.
    J. A. Wells and D. A. Estell, Trends Biochem. Sci. 13, 291 (1988).PubMedCrossRefGoogle Scholar
  59. 59.
    K. Arima, in: Global Impacts of Applied Microbiology (M. P. Starr, ed.), pp. 278–279, Wiley (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Jonathan S. Dordick
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityUSA

Personalised recommendations