Multi-Attribute Decision Making and Generalized Expected Utility in Nuclear Power Plant Maintenance

  • François Beaudouin
  • Bertrand Munier
  • Yann Serquin
Part of the Theory and Decision Library book series (TDLB, volume 40)


In the field of nuclear power plant maintenance, it is not unusual that several strategies (scenarios) of preventive maintenance are being suggested at the same time. How to determine the most advisable choice among those suggested is not a trivial matter, because on the one hand, the consequences of a given strategy are multidimensional (impact on the maintenance costs, on the reliability of the systems, on the safety of the installation, on the availability of the power plant, on exposure to radiation, etc.) and on the other hand, these consequences are not deterministic. To select a strategy of preventive maintenance, the decision-maker (or the decision-making group) must then make a complicated and subtle choice, taking into account the tradeoff between his judgement about uncertainties and his evaluations of the many and contradictory things at stake. In decision theory, the most thorough method to resolve this kind of problem is Multi-Attribute Utility Theory (MAUT).


Utility Function Preventive Maintenance Certainty Equivalent Multiattribute Utility Rank Dependent Utility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdellaoui, M., 1995, « Comportements individuels devant le risque et transformation des probabilités», Revue d’Economie Politique, 105: 157–178.Google Scholar
  2. Abdellaoui, M., Munier, B, 1994, « On the Fundamental Risk-Structure Dependence of Individual Preferences under Risk: An Experimental Investigation », Note de recherche GRID n°94–07.Google Scholar
  3. Abdellaoui, M., Munier, B., 1996, «Utilité «dépendant du rang » et utilité espérée», Revue Economique, 47: 567–576.Google Scholar
  4. Abdellaoui, M., Munier B., 1997: « Experimental Determination of Preferences under Risk: The Case of Very Low Probability Radiation », Ciencia & Tecnologia dos Materiais, 9: 25–31.Google Scholar
  5. Abdellaoui, M., Munier B., 1998, « The Risk-Structure Dependence Effect: Experimenting with an Eye to Decision-Aiding», Annals of Operations Research, 80: 237–252.Google Scholar
  6. Bouyssou, D., Vansnick, J.C, 1990, « Utilité cardinale dans le certain et choix dans le risqué », Revue Economique, 41: 979–1000.Google Scholar
  7. Chew, S., Kami, E., Safra, Z., 1987, « Risk aversion in the theory of expected utility with rank-dependent probabilities », Journal of Economic Theory, 42: 370–381.Google Scholar
  8. Currim, I.S., Sarin, R.K., 1989, « Prospect versus utility », Management Science, 35:22–40. Denneberg, D., 1994, Non Additive Measures and Integrals, Dordrecht/ Boston, Kluwer Academic Publishers.Google Scholar
  9. Denneberg, R., 1994, « Decomposition of multivariate utility functions in non-additive expected utility theory » Journal of Multi-criteria Decision Analysis,3:41–58.Google Scholar
  10. Farquhar, P.H, 1984, « Utility assessment method», Management Science, 30: 1283–1300.Google Scholar
  11. Fishburn, P.C, 1984, « Multiattribute nonlinear utility theory», Management Science, 30: 1301–1310.Google Scholar
  12. Fishburn, P.C, 1989, « Generalizations of expected utility theories: a survey of recent proposals », Annals of Operations Research, 19: 3–28.Google Scholar
  13. Gilboa, I., 1987, « Expected-utility with purely subjective non-additive probabilities», Journal of Mathematical Economics, 16: 65–88.Google Scholar
  14. Gilboa, I., 1989, « Duality in non-additive expected utility theory», Annals of Operations Research, 19: 405–414.Google Scholar
  15. Keeney, R.L., Raiffa, H., 1976, Decision with multiple objectives: preferences and value trade offs, New York, John Wiley & Sons.Google Scholar
  16. Krzysztofowicz, R., Koch, J.B., 1989, « Estimation of cardinal utility based on a nonlinear theory », Annals of Operations Research, 19: 181–204.Google Scholar
  17. Mangelsdorff, L., Weber, M., 1994, « Testing Choquet expected utility», Journal of Economic Behavior and Organization, 25: 437–457.Google Scholar
  18. McCord, M., de Neufville, R., 1986, «Lottery Equivalents’: Reduction of the certainty effect problem in utility assessment», Management Science, 32: 56–60.Google Scholar
  19. Miyamoto, J.M., 1988, « Generic utility theory: measurement foundations and applicationsGoogle Scholar
  20. in multiattribute utility theory», Journal of Mathematical Psychology,32:357–404. Miyamoto, J.M., Wakker P., 1996, « Multiattribute utility theory without expected utility foundations», Operations Research,44:313–326.Google Scholar
  21. Mosler, K., 1984, « Stochastic dominance rules when the attributes are utility independent », Management Science, 30: 1311–1322.Google Scholar
  22. Multiattribute Generalized Expected UtilityGoogle Scholar
  23. Munier, B., 1989, « Calcul économique et révision de la théorie de la décision en avenir risqué », Revue d’Economie Politique, 99: 276–306.Google Scholar
  24. Munier, B., 1995, « Entre rationalités instrumentales et cognitive: Contributions de la décennie à la modélisation du risque », Revue d’Economie Politique, 105: 6–70.Google Scholar
  25. Munier, B., Parent, E., 1998: « Le Développement récent des Sciences de la Décision: Un regard critique sur la Statistique Décisionnelle Bayésienne », Proceedings of the Fifth International Conference on Hydrological Engineering, Paris, UNESCO.Google Scholar
  26. Quiggin, J., 1982, « A theory of anticipated utility», Journal of Economic Behavior and Organization, 3: 323–343.Google Scholar
  27. Serquin, Y., Beaudouin, F., 1996, « Les modèles d’optimisation des décisions de maintenance: une évaluation critique », Proceedings 410, 2: 637–647.Google Scholar
  28. Tversky, A., Kahneman, D., 1992, « Advances in prospect theory: cumulative representation of uncertainty», Journal of Risk and Uncertainty, 5: 297–323.Google Scholar
  29. Wakker, P., 1989a, «Continuous subjective expected utility with non-additive probabilities», Journal of Mathematical Economics, 18: 1–27.Google Scholar
  30. Wakker, P., 1989b, Additive representation of preference. A new foundation of decision analysis, Dordrecht: Kluwer.CrossRefGoogle Scholar
  31. Wakker, P., 1990, « Under stochastic dominance Choquet-Expected Utility and Anticipated Utility are identical», Theory and Decision, 29: 119–132.Google Scholar
  32. Wakker, P., 1994, « Separating marginal utility and probabilistic risk aversion», Theory and Decision, 36: 1–44.Google Scholar
  33. Wakker, P., Deneffe, D., 1996, « Eliciting Von Neumann-Morgenstern utilities when probabilities are distorted or unknown», Management Science, 42: 1131–1151.Google Scholar
  34. Wu, G., Gonzales, R., 1996, «Curvature of the probability weighting function », Management Science, 42: 1676–1690.Google Scholar
  35. Yaari, M.E., 1986, « Univariate and multivariate comparison of risk aversion: a new approach», in Essays in honor of Kenneth J. Arrow. ed by W.P. Heller, R. Starr, and D. Starrett. Cambridge University Press, Cambridge.Google Scholar
  36. Yaari, M.E., 1987, « The dual theory of choice under risk », Econometrica, 55: 95–115.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • François Beaudouin
    • 1
  • Bertrand Munier
    • 2
  • Yann Serquin
    • 2
  1. 1.Département SDM, Groupe Aide à la Décision de MaintenanceEDF-DERFrance
  2. 2.Département Economie et Gestion, Ecole Normale Supérieure de CachanGRIDFrance

Personalised recommendations