Multi-Attribute Decision Making and Generalized Expected Utility in Nuclear Power Plant Maintenance
Abstract
In the field of nuclear power plant maintenance, it is not unusual that several strategies (scenarios) of preventive maintenance are being suggested at the same time. How to determine the most advisable choice among those suggested is not a trivial matter, because on the one hand, the consequences of a given strategy are multidimensional (impact on the maintenance costs, on the reliability of the systems, on the safety of the installation, on the availability of the power plant, on exposure to radiation, etc.) and on the other hand, these consequences are not deterministic. To select a strategy of preventive maintenance, the decision-maker (or the decision-making group) must then make a complicated and subtle choice, taking into account the tradeoff between his judgement about uncertainties and his evaluations of the many and contradictory things at stake. In decision theory, the most thorough method to resolve this kind of problem is Multi-Attribute Utility Theory (MAUT).
Keywords
Utility Function Preventive Maintenance Certainty Equivalent Multiattribute Utility Rank Dependent UtilityPreview
Unable to display preview. Download preview PDF.
References
- Abdellaoui, M., 1995, « Comportements individuels devant le risque et transformation des probabilités», Revue d’Economie Politique, 105: 157–178.Google Scholar
- Abdellaoui, M., Munier, B, 1994, « On the Fundamental Risk-Structure Dependence of Individual Preferences under Risk: An Experimental Investigation », Note de recherche GRID n°94–07.Google Scholar
- Abdellaoui, M., Munier, B., 1996, «Utilité «dépendant du rang » et utilité espérée», Revue Economique, 47: 567–576.Google Scholar
- Abdellaoui, M., Munier B., 1997: « Experimental Determination of Preferences under Risk: The Case of Very Low Probability Radiation », Ciencia & Tecnologia dos Materiais, 9: 25–31.Google Scholar
- Abdellaoui, M., Munier B., 1998, « The Risk-Structure Dependence Effect: Experimenting with an Eye to Decision-Aiding», Annals of Operations Research, 80: 237–252.Google Scholar
- Bouyssou, D., Vansnick, J.C, 1990, « Utilité cardinale dans le certain et choix dans le risqué », Revue Economique, 41: 979–1000.Google Scholar
- Chew, S., Kami, E., Safra, Z., 1987, « Risk aversion in the theory of expected utility with rank-dependent probabilities », Journal of Economic Theory, 42: 370–381.Google Scholar
- Currim, I.S., Sarin, R.K., 1989, « Prospect versus utility », Management Science, 35:22–40. Denneberg, D., 1994, Non Additive Measures and Integrals, Dordrecht/ Boston, Kluwer Academic Publishers.Google Scholar
- Denneberg, R., 1994, « Decomposition of multivariate utility functions in non-additive expected utility theory » Journal of Multi-criteria Decision Analysis,3:41–58.Google Scholar
- Farquhar, P.H, 1984, « Utility assessment method», Management Science, 30: 1283–1300.Google Scholar
- Fishburn, P.C, 1984, « Multiattribute nonlinear utility theory», Management Science, 30: 1301–1310.Google Scholar
- Fishburn, P.C, 1989, « Generalizations of expected utility theories: a survey of recent proposals », Annals of Operations Research, 19: 3–28.Google Scholar
- Gilboa, I., 1987, « Expected-utility with purely subjective non-additive probabilities», Journal of Mathematical Economics, 16: 65–88.Google Scholar
- Gilboa, I., 1989, « Duality in non-additive expected utility theory», Annals of Operations Research, 19: 405–414.Google Scholar
- Keeney, R.L., Raiffa, H., 1976, Decision with multiple objectives: preferences and value trade offs, New York, John Wiley & Sons.Google Scholar
- Krzysztofowicz, R., Koch, J.B., 1989, « Estimation of cardinal utility based on a nonlinear theory », Annals of Operations Research, 19: 181–204.Google Scholar
- Mangelsdorff, L., Weber, M., 1994, « Testing Choquet expected utility», Journal of Economic Behavior and Organization, 25: 437–457.Google Scholar
- McCord, M., de Neufville, R., 1986, «Lottery Equivalents’: Reduction of the certainty effect problem in utility assessment», Management Science, 32: 56–60.Google Scholar
- Miyamoto, J.M., 1988, « Generic utility theory: measurement foundations and applicationsGoogle Scholar
- in multiattribute utility theory», Journal of Mathematical Psychology,32:357–404. Miyamoto, J.M., Wakker P., 1996, « Multiattribute utility theory without expected utility foundations», Operations Research,44:313–326.Google Scholar
- Mosler, K., 1984, « Stochastic dominance rules when the attributes are utility independent », Management Science, 30: 1311–1322.Google Scholar
- Multiattribute Generalized Expected UtilityGoogle Scholar
- Munier, B., 1989, « Calcul économique et révision de la théorie de la décision en avenir risqué », Revue d’Economie Politique, 99: 276–306.Google Scholar
- Munier, B., 1995, « Entre rationalités instrumentales et cognitive: Contributions de la décennie à la modélisation du risque », Revue d’Economie Politique, 105: 6–70.Google Scholar
- Munier, B., Parent, E., 1998: « Le Développement récent des Sciences de la Décision: Un regard critique sur la Statistique Décisionnelle Bayésienne », Proceedings of the Fifth International Conference on Hydrological Engineering, Paris, UNESCO.Google Scholar
- Quiggin, J., 1982, « A theory of anticipated utility», Journal of Economic Behavior and Organization, 3: 323–343.Google Scholar
- Serquin, Y., Beaudouin, F., 1996, « Les modèles d’optimisation des décisions de maintenance: une évaluation critique », Proceedings 410, 2: 637–647.Google Scholar
- Tversky, A., Kahneman, D., 1992, « Advances in prospect theory: cumulative representation of uncertainty», Journal of Risk and Uncertainty, 5: 297–323.Google Scholar
- Wakker, P., 1989a, «Continuous subjective expected utility with non-additive probabilities», Journal of Mathematical Economics, 18: 1–27.Google Scholar
- Wakker, P., 1989b, Additive representation of preference. A new foundation of decision analysis, Dordrecht: Kluwer.CrossRefGoogle Scholar
- Wakker, P., 1990, « Under stochastic dominance Choquet-Expected Utility and Anticipated Utility are identical», Theory and Decision, 29: 119–132.Google Scholar
- Wakker, P., 1994, « Separating marginal utility and probabilistic risk aversion», Theory and Decision, 36: 1–44.Google Scholar
- Wakker, P., Deneffe, D., 1996, « Eliciting Von Neumann-Morgenstern utilities when probabilities are distorted or unknown», Management Science, 42: 1131–1151.Google Scholar
- Wu, G., Gonzales, R., 1996, «Curvature of the probability weighting function », Management Science, 42: 1676–1690.Google Scholar
- Yaari, M.E., 1986, « Univariate and multivariate comparison of risk aversion: a new approach», in Essays in honor of Kenneth J. Arrow. ed by W.P. Heller, R. Starr, and D. Starrett. Cambridge University Press, Cambridge.Google Scholar
- Yaari, M.E., 1987, « The dual theory of choice under risk », Econometrica, 55: 95–115.Google Scholar