On the algebra of the geometry of mechanics

  • René Lavendhomme
Part of the Kluwer Texts in the Mathematical Sciences book series (TMS, volume 13)


First we define the fundamental concept of Riemannian structure. We must clarify the notion of non-degenerate map, because, in our logic, the function of negation is tricky.


Vector Field Vector Bundle Poisson Structure Riemannian Structure Riemannian Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Commented bibliography

  1. [1]
    ABRAHAM, R., MARSDEN, J. E. Foudations of Mechanics, Benjamin, 1978.Google Scholar
  2. [21]
    GODBILLON, C., Géométrie différentielle et mécanique analytique, Paris, Hermann, 1969.Google Scholar
  3. [45]
    LIBERMANN, P., and MARLE, C.-M, Symplectic Geometry and Analytical Mechanics, Reidel, 1987.Google Scholar
  4. [43]
    LAVENDHOMME, R., Algèbres de Lie et Groupes microlinéaires, Cahiers Top. et Géom. Diff.Cat.,bf 35–1 (1994) 29–47.Google Scholar
  5. [6]
    BUNGE, M., Synthetic aspects of C°°-mappings, J. Pure Appl. Algebra 28 (1983), 41–63.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [8]
    BUNGE, M., and DUBUC, E.J., Local concepts in synthetic differential geometry and germ representability, in “Mathematical Logic and Theoretical Computer Sciences”, D. Kueher, E.G.K. Lopez-Escobar and C. Smith eds., Dekker, New York, 1987, pp. 39–158.Google Scholar
  7. [9]
    BUNGE, M. and GAGO, F., Synthetic aspects of C°°-mappings II: Mather’s theorem for infinitesimally represented germs, J. Pure Appl. Algebra 55 (1988), 213–250.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [19]
    GAGO, F., Morse germs in SDG,in “Categorial Algebra and its Applications”, F. Borceux ed., Springer Lecture Notes 1348 (1988), 125–129.Google Scholar
  9. [20]
    GAGO, F., Singularités dans la géometrie différentielle synthétique, Bull. Soc. Math. Belgique, Ser. A, 41 (1989), 279–287.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • René Lavendhomme
    • 1
  1. 1.Université Catholique de LouvainBelgium

Personalised recommendations