Global actions

  • René Lavendhomme
Part of the Kluwer Texts in the Mathematical Sciences book series (TMS, volume 13)


It appeared in the thread of preceding chapters that objects defined in a pointwise manner give rise to some global actions. Such was the case of vector fields, differential forms or connections. We will give here a more systematic account of these situations.


Basic Concept Differential Form Bianchi Identity Jacobi Identity Global Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Commented bibliography

  1. [42]
    LAVENDHOMME, R., Objets de Lie, Bull. Soc. Math. Belgique, Ser. B, 43 (1991), 83–112.Google Scholar
  2. [39]
    KOSZUL, J.-L., Homologie et cohomologie des algèbres de Lie Bull. Soc. Math. France 78 (1950), 65–127.Google Scholar
  3. [11]
    CARTAN, H., Notions d’algèbres différentielle; applications aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de Topologie, Bruxelles, 1951, 15–27.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • René Lavendhomme
    • 1
  1. 1.Université Catholique de LouvainBelgium

Personalised recommendations