Differential calculus and integrals

  • René Lavendhomme
Part of the Kluwer Texts in the Mathematical Sciences book series (TMS, volume 13)


Mathematicians or physicists often speak, with some neglect, of first order approximation, as if they were manipulating numbers d so small that they have null square.


Basic Concept Unique Function Classical Logic Intuitionistic Logic Previous Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Commented bibliography

  1. [56]
    WEIL, A., Théorie des points proches sur les variétés différentiables, in Conference Geom. Diff., Strasbourg, 1953, took up again in “Oeuvres scientifiques, collected papers”, vol. II, Springer 1979, 103–109.Google Scholar
  2. [17]
    EHRESMANN, Ch., Oeuvres complètes et commentées I.1 et I.2, Suppléments 1 et 2 au vol. XXIV des Cahiers de Topologie et Géométrie Différentielle, (1983).Google Scholar
  3. [22]
    GROTHENDIECK, A., in collaboration with J. DIEUDONNE, Eléments de géométrie algébrique, Inst. Hautes Et. Sc., publ. math. nos 4, 8, 11, 17, 20, 24, 28, 32 (de 1960 à 1967 ).Google Scholar
  4. [44]
    F.W. LAWVERE, Categorical Dynamics, in [25], 1–28.Google Scholar
  5. [25]
    KOCK, A.,(ed), Topos theoretic Methods in Geometry, edited by A. Kock, Various Publications Series n30, Aarhus, 1979.Google Scholar
  6. [31]
    KOCK, A., Synthetic Differential Geometry, London Math. Soc. Lect. Note Series 51, Cambridge Univ. Press, 1981.Google Scholar
  7. [52]
    MOERDIJK, I., and REYES, G.E., Models for Smooth Infinitesimal Analysis, Springer, 1991.Google Scholar
  8. [25]
    KOCK, A.,(ed), Topos theoretic Methods in Geometry, edited by A. Kock, Various Publications Series n30, Aarhus, 1979.Google Scholar
  9. [26]
    KOCK, A.,(ed), Category theoretic Methods in Geometry, edited by A.Kock, Various Publications Series n35, Aarhus, 1983.Google Scholar
  10. [27]
    KOCK, A., A simple axiomatic for differentiation, Math. Scand. 40 (1977), 183–193.Google Scholar
  11. [28]
    KOCK, A., Taylor Series calculus for ring objects of line type, Journ. Pure Appl. Mg. 18 (1978), 271–293.Google Scholar
  12. [38]
    KOCK, A., REYES, G.E., and VEIT, B., Forms and integratin in synthetic differential geometry,Aarhus Preprint Series, n31 (1979/80).Google Scholar
  13. [2]
    BELAIR„L., Calcul infinitésimal en géométrie différentielle synthétique, Master Thesis, Montréal, 1981.Google Scholar
  14. [46]
    MacLARTY, C., Local and some global results in synthetic differential geometry, in ([26]), 226–256.Google Scholar
  15. [7]
    BUNGE, M., and DUBUC, E.J., Archimedean local C°°-rings and models of synthetic differential geometry, Cahiers Top. Géom. Diff. Cat. 27 (1986), 3–22.MathSciNetzbMATHGoogle Scholar
  16. [8]
    BUNGE, M., and DUBUC, E.J., Local concepts in synthetic differential geometry and germ representability, in “Mathematical Logic and Theoretical Computer Sciences”, D. Kueher, E.G.K. Lopez-Escobar and C. Smith eds., Dekker, New York, 1987, pp. 39–158.Google Scholar
  17. [53]
    PENON, J., De l’infinitésimal au local, State PhD. Thesis, Paris, 1985, 191 pp.Google Scholar
  18. [6]
    BUNGE, M., Synthetic aspects of C°°-mappings, J. Pure Appl. Algebra 28 (1983), 41–63.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [9]
    BUNGE, M. and GAGO, F., Synthetic aspects of C°°-mappings II: Mather’s theorem for infinitesimally represented germs, J. Pure Appl. Algebra 55 (1988), 213–250.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [19]
    GAGO, F., Morse germs in SDG,in “Categorial Algebra and its Applications”, F. Borceux ed., Springer Lecture Notes 1348 (1988), 125–129.Google Scholar
  21. [20]
    GAGO, F., Singularités dans la géometrie différentielle synthétique, Bull. Soc. Math. Belgique, Ser. A, 41 (1989), 279–287.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • René Lavendhomme
    • 1
  1. 1.Université Catholique de LouvainBelgium

Personalised recommendations