Nocardia asteroides as an Invasive, Intracellular Pathogen of the Brain and Lungs

  • Blaine L. Beaman
  • LoVelle Beaman
Part of the Subcellular Biochemistry book series (SCBI, volume 33)


This genus is defined morphologically as gram-positive, partially acid-fast, branching filamentous bacteria that divide by fragmentation. They are strictly aerobic, mycolic acid containing actinomycetes phylogenetically related to Mycobacterium, Corynebacterium, Rhodococcus, Gordona, and Tsukamurella (Wilson et al., 1998). Twelve species comprise this genus; however, the type species, Nocardia asteroides, has been most frequently studied (Beaman, B. and L. Beaman, 1994). This species is phenotypically diverse, and many investigators believe that the N. asteroides complex consists of at least 5 to 6 distinct groups. Some of these have now been assigned species status. Thus, the N. asteroides complex currently includes N. asteroides, N. farcinica, and N. nova. It is likely that additional species will be created from further subdivision of this taxon. Since routine laboratory identification does not differentiate these species, most reports of infections due to N. asteroides represent the total complex and underestimate infections due to individual members such as N. farcinica and N. nova (Workman et al., 1998).


Intracellular Pathogen Mycolic Acid Stationary Phase Cell Pulmonary Epithelial Cell Nocardia Asteroides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Doory, Y., Pinkerton, M.E., Vice, T.E., and Hutchinson V., 1969, Pulmonary nocardiosis in a vervet monkey, J. Amer. Vet. Med. Assoc. 155: 1179–1180.Google Scholar
  2. Arruda, S., Bomfim, G., Knights, R., Huima-Byron, T., and Riley, L.W., 1993, Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells, Science 261: 1454–1456.PubMedCrossRefGoogle Scholar
  3. Barinaga, M., 1996, A shared strategy for virulence, Science 272: 1261–1263.PubMedCrossRefGoogle Scholar
  4. Barnes, P.F., Chatterjee, D., Abrams, J.S., Lu, S., Wang, E., Yamamura, M., Brennan, P.J., and Modlin, R.L., 1992, Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannan, relationship to chemical structure, J. Immunol. 149: 541–547.PubMedGoogle Scholar
  5. Beaman, B.L., 1975, Structural and biochemical alterations of Nocardia asteroides cell walls during its growth cycle, J. Bacteriol. 123: 1235–1253.PubMedGoogle Scholar
  6. Beaman, B.L., 1977, The in vitro response of rabbit alveolar macrophages to infection with Nocardia asteroides, Infect. Immun. 15: 925–937.PubMedGoogle Scholar
  7. Beaman, B.L., 1979, Interaction of Nocardia asteroides at different phases of growth with in vitro-maintained macrophages obtained from the lungs of normal and immunized rabbits, Infect.lmmun. 26: 355–361.Google Scholar
  8. Beaman, B.L., 1993, Ultrastructural analysis of growth of Nocardia asteroides during invasion of the murine brain, Infect. Immun. 61: 274–283.PubMedGoogle Scholar
  9. Beaman, B.L., 1996, Differential binding of Nocardia asteroides in the murine lung and brain suggest multiple ligands on the nocardial surface, Infect. Immun. 64: 4859–4862.PubMedGoogle Scholar
  10. Beaman, B.L., and Beaman, L., 1994, Nocardia species: Host-parasite relationships, Clin. Microbiol. Rev. 7: 213–264.Google Scholar
  11. Beaman, B.L., and Beaman, L., 1998, Filament tip-associated antigens involved in adherence to and invasion of murine pulmonary epithelial cells in vivo and Hela cells in vitro by Nocardia asteroides, Infect. Immun. 66 (in press).Google Scholar
  12. Beaman, B.L., Black, M., Doughty, E, and Beaman, L., 1985, Role of superoxide dismutase and catalase as determinants of pathogenicity of Nocardia asteroides: Importance in resistance to microbicidal activities of human polymorphonuclear neutrophile, Infect. Immun. 47: 135–141.PubMedGoogle Scholar
  13. Beaman, B.L., Bourgeois, A.L., and Moring, S.E., 1981, Cell wall modification resulting from in vitro induction of L-phase variants of Nocardia asteroides, J. Bacteriol. 148: 600–609.PubMedGoogle Scholar
  14. Beaman, B.L., and Maslan, S., 1978, Virulence of Nocardia asteroides during its growth cycle, Infect. Immun. 20: 290–295.PubMedGoogle Scholar
  15. Beaman, B.L., Maslan, S., Scates, S., and Rosen, J., 1980, Effect of route of inoculation on host resistance to Nocardia, Infect. Immun. 28: 185–189.PubMedGoogle Scholar
  16. Beaman, B.L., and Moring, S.E., 1988, Relationship among cell wall composition, stage of growth, and virulence of Nocardia asteroides GUH-2, Infect. Immun. 56: 557–563.PubMedGoogle Scholar
  17. Beaman, B.L., Moring, S.E., and Ioneda, T., 1988, Effect of growth stage on mycolic acid structure in cell walls of Nocardia asteroides GUH-2, J. Bacteriol. 170: 1137–1142.PubMedGoogle Scholar
  18. Beaman, B.L., and Ogata, S.A., 1993, Ultrastructural analysis of attachment to and penetration of capillaries in the murine pons, midbrain, thalamus and hypothalamus by Nocardia asteroides, Infect. Immun. 61: 955–965.PubMedGoogle Scholar
  19. Beaman, B.L., and Smathers, M., 1976, Interaction of Nocardia asteroides with cultured rabbit alveolar macrophages, Infect. Immun. 13: 1126–1131.PubMedGoogle Scholar
  20. Beaman. B.L., and Sugar, A., 1983, Nocardia in naturally acquired and experimental infections in animals, J. Hyg., Camb. 91: 393–419.Google Scholar
  21. Beaman, L., Paliescheskey, M., and Beaman, B.L., 1988, Acid phosphatase stimulation of the growth of Nocardia asteroides and its possible relationship to the modification of lysosomal enzymes in macrophages, Infect. Immun. 56: 1652–1654.PubMedGoogle Scholar
  22. Beaman, L., 1987, Fungicidal activation of murine macrophages by recombinant gamma interferon, Infect. Immun. 55: 2951–2955.PubMedGoogle Scholar
  23. Beaman, L., and Beaman, B.L., 1990, Monoclonal antibodies demonstrate that superoxide dismutase contributes to protection of Nocardia asteroides within the intact host, Infect. Immun. 58: 3122–3128.PubMedGoogle Scholar
  24. Beaman, L., and Beaman, B.L., 1992, The timing of exposure of mononuclear phagocytes to recombinant interferon-gamma and recombinant turmor necrosis factor-alpha alters interactions with Nocardia asteroides, J. Leukocyte Biol. 51: 251–281.Google Scholar
  25. Beaman, L., and Beaman, B.L., 1993, Interactions of Nocardia asteroides with murine glia cells in culture, Infect. Immun. 61: 343–347.PubMedGoogle Scholar
  26. Beaman, L., and Beaman, B.L., 1994, Differences in the interactions of Nocardia asteroides with macrophage, endothelial, and astrocytoma cell lines, Infect. Immun. 62: 1787–1798.PubMedGoogle Scholar
  27. Bermudez, L.E., Petrofsky, M., and Goodman, J., 1997, Exposure to low oxygen tension and increased osmolarity enhance the ability of Mycobacterium avium to enter intestinal epithelial (HT-29) cells, Infect. Immun. 65: 3768–3773.PubMedGoogle Scholar
  28. Bermudez, L.E., and Young, L.S., 1994, Factors affecting invasion of HT-29 and HEp-2 epithelial cells by organisms of the Mycobacterium avium complex, Infect. Immun. 62: 2021–2026.PubMedGoogle Scholar
  29. Black, C., Beaman, B.L., Donovan, R.M., and Goldstein, E., 1983, Effect of virulent and less virulent strains of Nocardia asteroides on acid-phosphatase activity in alveolar and peritoneal macrophages maintained in vitro, J. Infect. Dis. 148: 117–124.PubMedCrossRefGoogle Scholar
  30. Black, C.M., Beaman, B.L., Donovan, R.M., and Goldstein, E.M., 1985, Intracellular acid phosphatase content and ability of different macrophage populations to kill Nocardia asteroides, Infect. Immun. 47: 375–383.PubMedGoogle Scholar
  31. Black, C.M., Paliescheskey, M., Beaman, B.L., Donovan, R.M., and Goldstein, E., 1986, Acidification of phagosomes in murine macrophages, J. Infect. Dis 154: 952–958.PubMedCrossRefGoogle Scholar
  32. Black, M., Paliescheskey, M., Beaman, B.L., Donovan, R.M., and Goldstein, E., 1986, Modulation of lysosomal protease-esterase and lysozyme in Kupffer cells and peritoneal macrophages infected with Nocardia asteroides, Infect. Immun. 54: 917–919.PubMedGoogle Scholar
  33. Black, C.M., Catterral, J.R., and Remington, J.S.; 1987, In vivo and in vitro activation of alveolar macrophages by recombinant interferon-gamma, J. Immunol. 138: 491–495.Google Scholar
  34. Boncyk, L.H., McCullough, B., Grotts, D.D., and Kalter, S.S., 1975, Localized nocardiosis due to Nocardia caviae in a baboon (Papio cynocephalus), Lab. An. Sci. 25: 88–91.Google Scholar
  35. Bourgeois, L., and Beaman, B.L., 1974, Probable L-forms of Nocardia asteroides induced in cultured mouse peritoneal macrophages, Infect. Immun. 9: 576–590.PubMedGoogle Scholar
  36. Chan, J., Fan, X., Hunter, S.W., Brennan, P.J., and Bloom, B.R., 1991, Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages, Infect. Immun. 59: 1755–1761.PubMedGoogle Scholar
  37. Chatterjee, D., Lowell, K., Rivoire, B., McNeil, M.R., and Brennan, P.J., 1992, Lipoarabinomannan of Mycobacterium tuberculosis: capping with mannosyl residues in some strains, J. Biol. Chem. 267: 6234–6236.PubMedGoogle Scholar
  38. Chen, S.C., 1992, Study on the pathogenicity of Nocardia asteroides to the formosa snakehead Channamaculata (lacepede), and largemouth bass, Micropterus salmoides (lacepede), J. Fish Dis. 15: 47–53.CrossRefGoogle Scholar
  39. Cossart, P., and Lecuit, M., 1998, Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling, EMBO 17: 3797–3806.CrossRefGoogle Scholar
  40. Crowe, L.M., Spargo, B.J., Ioneda, T., Beaman, B.L., and Crowe, J.H., 1994, Interaction of cord factor (a,a’-trehalose-6,6’-dimycolate) with phospholipids, Biochim. Biophys. Acta 1194: 53–60.PubMedCrossRefGoogle Scholar
  41. Davis-Scibienski, C., and Beaman, B.L., 1980a, Interaction of Nocardia asteroides with rabbit alveolar macrophages: Association of virulence, viability, ultrastructural damage, and phagosome-lysosome fusion, Infect. Immun. 28: 610–619.PubMedGoogle Scholar
  42. Davis-Scibienski, C., and Beaman, B.L., 1980b, Interaction of Nocardia asteroides with rabbit alveolar macrophages: Effect of growth phase and viability on phagosome-lysosome fusion, Infect. Immun. 29: 24–29.PubMedGoogle Scholar
  43. Davis-Scibienski, C., and Beaman, B.L., 1980c, Interaction of alveolar macrophages with Nocardia asteroides: Immunological enhancment of phagocytosis, phagosome-lysosome fusion and microbicidal activity, Infect. Immun. 30: 578–587.PubMedGoogle Scholar
  44. Eppinger, H., 1890, Uber eine neue, pathogene Cladothrix und eine durch sie hervogerufene Pseudotuberculosis, Wien. Klin. Wochenschr. 3: 321–323.Google Scholar
  45. Eppinger, H., 1891, Uber eine neue, pathogene Cladothrix und eine durch sie hervogerufene Pseudotuberculosis (cladothrichica), Behr. Pathol. Anat. Allg. Pathol. 9: 287–328.Google Scholar
  46. Falkow, S., 1991, Bacterial entry into eukaryotic cells, Cell 65: 1099–1102.PubMedCrossRefGoogle Scholar
  47. Filice, G.A., Beaman, B.L., Krick, J.A., and Remington, J.S., 1980, Effects of human neutrophils and monocytes on Nocardia asteroides: Failure of killing despite occurrence of the oxidative metabilic burst, J. Infect. Dis. 142: 432–438.PubMedCrossRefGoogle Scholar
  48. Filice, G.A., 1983, Resistance of Nocardia asteroides to oxygen-dependant killing by neutrophils, J. Infect. Dis. 148: 861–867.PubMedCrossRefGoogle Scholar
  49. Filice, G.A., 1985, Inhibition of Nocardia asteroides by neutrophils, J. Infect. Dis. 151: 47–56.PubMedCrossRefGoogle Scholar
  50. Friedman, C.S., Beaman, B.L., Chun, J., Goodfellow, M., Gee, A., and Hedrick, R.P., 1998, Nocardia crassostreae sp. nov., the causal agent of nocardiosis in Pacific oysters, Int. J. Syst. Bacteriol. 48: 237–246.CrossRefGoogle Scholar
  51. Gaillard, J.L., Berche, R, Frehel, C., Gouin, E., and Cossart, R, 1991, Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive bacteria, Cell 65: 1127–1141.PubMedCrossRefGoogle Scholar
  52. Goren, M.B., 1990, Mycobacterial fatty acid esters of sugars and sulfosugars, in: Glycolipids, Phosphoglycolipids and Sulfoglycolipids. Handbook of Lipid Research, Volume 6 ( M. Kaitz, ed.), Plenum Press, New York, pp. 363–461.Google Scholar
  53. Jarvis, K.G., Giron, J.A., Jerse, A.E., McDaniel, T.K., Donnenberg, M.S., and Kaper, J.B., 1995, Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation, Proc. Natl. Acad. Sci. 92: 7996–8000.PubMedCrossRefGoogle Scholar
  54. Jonas, A.M., and Wyand, D.S., 1966, Pulmonary nocardiosis in the Rhesus monkey, Path. Vet. 3, 588–600.CrossRefGoogle Scholar
  55. Kang, B.K., and Schlesinger, L.S., 1998, Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan, Infect. Immun. 66: 2769–2777.PubMedGoogle Scholar
  56. Kessler, M.J., and Brown, R.J., 1981, Mycetomas in a squirrel monkey, J. Zoo An. Med. 12: 91–93.CrossRefGoogle Scholar
  57. Khan, Z.U., Neil, L., Chandy, R., Chugh, T.D., Al-Sayer, H., Provost, F., and Boiron, P., 1997, Nocardia asteroides in the soil of Kuwait, Mycopathologia. 137: 159–163.CrossRefGoogle Scholar
  58. Kjelstrom J.A., and Beaman, B.L., 1993, Development of a serological panel for recognition of nocardial infections in a murine model, Diagn. Microbiol. Infect. Dis. 16: 291–301.PubMedCrossRefGoogle Scholar
  59. Lechevalier, H.A., 1989, Nocardioform actinomycetes, in: Bergey ‘s Manual of Systematic Bacteriology, Volume 4 ( S.T. Williams, M.E. Sharpe, and J.G. Holt, eds.), The Williams & Wilkins Co., Baltimore, pp. 2348–2404.Google Scholar
  60. MacCallum, W.G., 1902, On the life history of Actinomyces asteroides, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hy. Abt. 1 Orig. 31: 528–547.Google Scholar
  61. Mahajan, V.M., Padhy, S.C., Dayal, Y., Bhatia, I.M., and Ratnakar, K.S., 1977, Experimental pulmonary nocardiosis in monkeys, Sabouraudia 15: 47–50.PubMedCrossRefGoogle Scholar
  62. Marino, D.J., and Jaggy, A., 1993, Nocardiosis: A literature review with selected case reports in two dogs, Vet. Intern. Med. 7: 4–11.CrossRefGoogle Scholar
  63. McClure, H.M., Chang, J., Kaplan, W, and Brown, J.M., 1976, Pulmonary nocardiosis in an Orangutan, J. Amer. Vet. Med. Assoc. 169: 943–945.Google Scholar
  64. Moreno, C.J., Taverne, A., Mehlert, C.A.W., Bate, R.J., Brealey, A., Meager, G.A.W., and Playfair, J.H.L., 1989, Lipoarabinomannan from Mycobacterium tuberculosis induces the production of tumor necrosis factor from human and murine macrophages, Clin. Exp. Immunol. 76: 240–245.PubMedGoogle Scholar
  65. Oatway, W.H., Jr., and Steenken, W., Jr., 1936, The pathogenesis and fate of the tubercle produced by dissociated variants of tubercle bacilli, J. Infect. Dis. 59: 306–325.CrossRefGoogle Scholar
  66. Odell, L.W., and Segal, A.W., 1991, Killing of pathogens associated with chronic granuloma-tous disease by the non-oxidatiive microbicidal mechanisms of human neutrophils, J. Med. Microbiol. 34: 129–135.PubMedCrossRefGoogle Scholar
  67. Ogata, S.A., and Beaman, B.L., 1992a, Adherence of Nocardia asteroides within the murine brain, Infect. Immun. 60: 1800–1805.PubMedGoogle Scholar
  68. Ogata, S.A., and Beaman, B.L., 1992b, Site specific growth of Nocardia asteroides within the murine brain, Infect. Immun. 60: 3262–3267.PubMedGoogle Scholar
  69. Ozeki, Y., Kaneda, K., Fujiwara, N., Morimoto, M., Oka, S., and Yano, I., 1997, In vivo induction of apoptosis in the thymus by administration of mycobacterial cord factor (trehalose 6,6’-dimycolate), Infect. Immun. 65: 1793–1799.PubMedGoogle Scholar
  70. Nocard, E., 1888, Note sur la maladie des boeufs de la Gouadeloupe connue sous le nom de farcin, Ann. Inst. Pasteur (Paris) 2: 293–302.Google Scholar
  71. Portnoy, D.A., Chakraborty, T., Goebel, W., and Cossart, P., 1992, Molecular determinants of Listeria monocytogenes pathogenesis, Infect. Immun. 60: 1263–1267.PubMedGoogle Scholar
  72. Provost, F., Blanc, M.V., Beaman, B.L., and Boiron, P., 19%, Occurrence of plasmids in pathogenic strains of Nocardia, J. Med. Microbiol. 45: 344–348.Google Scholar
  73. Provost, F, Laurent, E, Blanc, M.V., and Boiron, P., 1997, Transmission of nocardiosis and molecular typing of Nocardia species: a short review, Eur. J. Epidemiol. 13: 235–238.PubMedCrossRefGoogle Scholar
  74. Riess, F.G., Lichtinger, T., Cseh, R., Yassin, A.F., Schaal, K.P., and Benz, R., 1998, The cell wall porin of Nocardia farcinica: Biochemical identification of the channel-forming protein and biophysical characterization of the channel properties, Mol. Microbiol. 29: 139–150.PubMedCrossRefGoogle Scholar
  75. Sakakibara, I., Sugimoto, Y., Minato, H., Takasaka, M., and Honjo, S., 1984, Spontaneous nocardiosis with brain abscess caused by Nocardia asteroides in a cynomolgus monkey, J. Med. Primato!. 13: 89–95.Google Scholar
  76. Schlesinger, L.S., 1993, Macrophage phagocytoses of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors, J. Immunol. 150: 2920–2930.PubMedGoogle Scholar
  77. Schlesinger, L.S., 1998, Mycobacterium tuberculosis and the complement system, Trends Microbiol. 6: 47–49.CrossRefGoogle Scholar
  78. Schlesinger, L.S., Bellinger-Kawahara, C.G., Payne, N.R., and Horwitz, M.A., 1990, Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3, J. Immunol. 144: 2771–2780.PubMedGoogle Scholar
  79. Schlesinger, L.S., Hull, S.R., and Kaufman, T.M., 1994, Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages, J. Immunol. 152: 4070–4079.PubMedGoogle Scholar
  80. Schlesinger, L.S., Kaufman, T.M., Iyer, S., Hull, S.R., Marchiando, L.K., 1996, Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages, J. Immunol. 157: 4568–4575.PubMedGoogle Scholar
  81. Schorey, J.S., Carroll, M.C., and Brown, E.J., 1997, A macrophage invasion mechanism of pathogenic mycobacteria, Science 277: 1091–1093.PubMedCrossRefGoogle Scholar
  82. Sileo, L., Sievert, P.R., and Samuel, M.D., 1990, Causes of mortality of albatross chicks at Midway Atoll, Wildlife Dis. 26: 329–338.Google Scholar
  83. Silva, C.L., and Faccioli, L.H., 1988, Tumor necrosis factor (cachectin) mediates induction of cachexia by cord factor from mycobacteria, Infect. Immun. 56: 3067–3071.PubMedGoogle Scholar
  84. Silver, R.F., Li, Q., and Ellner, J.J., 1998, Expression of virulence of Mycobacterium tuberculosis within human monocytes: Virulence correlates with intracellular growth and induction of tumor necrosis factor alpha but not with evasion of lymphocyte-dependent monocyte effector functions, Infect. Immun. 66: 1190–1199.PubMedGoogle Scholar
  85. Spargo, B.J., Crowe, L.M., Ioneda, T., Beaman, B.L., and Crowe, J.H., 1991, Cord factor (a,a’trehalose-6,6’-dimycolate) inhibits fusion between phospholipid vesicles, Proc. Natl. Acad. Sci. USA. 88: 737–740.PubMedCrossRefGoogle Scholar
  86. Splino, M., Merka, V., and Kyntera, E, 1975, Phagocytosis and intracellular proliferation of Nocardia asteroides (strain Weipheld) in cell structures in vitro. 1. Alveolar macrophages of Guinea-pigs, Zentrabl. Bakteriol. Mikrobiol. Hyg. 1 Abt. Orig. A 232: 334–340.Google Scholar
  87. Steenken, W., Jr., Oatway, W.H., Jr., and Petroff, S.A., 1934, Biological studies of the tubercle bacillus. III. Dissociation and pathogenicity of the R and S variants of the human tubercle bacillus (H37), J. Exp. Med. 60: 515–540.PubMedCrossRefGoogle Scholar
  88. Tosteson, T.R., Ballantine, D.L., Tosteson, C.G., Hensley V., and Bardales, A.T., 1989, Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus, Appl. Environ. Microbiol. 55: 137–141.PubMedGoogle Scholar
  89. Uchida, K., and Seino, A., 1997, Intra-and intergeneric relationships of various actinomycete strains based on the acyl types of the muramyl residue in cell wall peptidoglycans examined in a glycolate test, Int. J. Syst. Bacteriol. 47: 182–190.CrossRefGoogle Scholar
  90. Umunnabuike, A.C., and Irokanulo, E.A., 1986, Isolation of Campylobacter subsp. jejuni from Oriental and American cockroaches caught in kitchens and poultry houses in Vom, Nigeria, Int. J. Zoonoses. 13: 180–186.PubMedGoogle Scholar
  91. Vistica, C.A., and Beaman, B.L., 1983, Pathogenic and virulence characterization of colonial mutants of Nocardia asteroides GUH-2, Can. J. Microbiol. 29: 1126–1135.PubMedCrossRefGoogle Scholar
  92. Wilson, R.W., Steingrube, V.A., Brown, B.A., and Wallace, R.J., Jr., 1998, Clinical application of PCR-restriction enzyme pattern analysis for rapid identification of aerobic actinomycete isolates, J. Clin. Microbiol. 36: 148–152.PubMedGoogle Scholar
  93. Workman, M.R., Philpott-Howard, J., Yates, M., Beighton, D., and Casewell, M.W., 1998, Identification and antibiotic susceptibility of Nocardia farcinica and N. nova in the UK, Med. Microbiol. 47: 85–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  1. 1.Department of Medical Microbiology and ImmunologyUniversity of California School of MedicineDavisUSA

Personalised recommendations