DNA Vaccine Delivery by Attenuated Intracellular Bacteria

  • Guido Dietrich
  • Werner Goebel
Part of the Subcellular Biochemistry book series (SCBI, volume 33)

Summary

Vaccination by intramuscular or intradermal injection of antigen-encoding DNA is a promising new approach leading to strong cellular and humoral immune responses. Since bone-marrow derived antigen presenting cells (APC) seem to induce these immune responses after migration to the spleen, it is desirable to deliver DNA vaccines directly to splenic APC. Recently, attenuated intracellular bacteria have been exploited for the introduction of DNA vaccine vectors into different cell types in vitro as well as in vivo and offer an attractive alternative to the direct inoculation of naked plasmid DNA.

Keywords

Listeria Monocytogenes Intracellular Bacterium Plasmid Delivery Phagosomal Membrane Host Cell Cytosol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R., Gao, X.-M., Papakonstantinopoulou, A., Roberts, M., and Dougan, G., 1996, Immune response in mice following immunization with DNA encoding fragment C of tetanus toxin, Infect. Immun. 64: 3168–3173.PubMedGoogle Scholar
  2. Barry, M.A., Lai, W.C., and Johnston, S.A., 1995, Protection against mycoplasma infection using expression-library immunization, Nature 377: 632–635.PubMedCrossRefGoogle Scholar
  3. Berche, P., Gaillard, J.-L., and Sansonetti, P.J., 1987, Intracellular growth of Listeria monocytogenes as a prerequisite for in vivo induction of T cell-mediated immunity, J. Immunol. 138: 2266–2271.PubMedGoogle Scholar
  4. Bot, A., Antohi, S., Bot, S., Garcia-Sastre, A., and Bona, C., 1997, Induction of humoral and cellular immunity against influenza virus by immunization of newborn mice with a plasmid bearing a hemagglutinin gene, Intl. Immunol. 9: 1641–1650.CrossRefGoogle Scholar
  5. Boyer, J.D., Ugen, K.E., Wang, B., Agadjanyan, M., Gilbert, L., Bagarazzi, M.L., Chattergoon, M., Frost, P., Javadian, A., Williams, W.V., Refaeli, Y., Ciccarelli, R.B., McCallus, D., Coney, L., and Weiner, D.B., 1997, Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination, Nature Med. 3: 526–532.PubMedCrossRefGoogle Scholar
  6. Busch, D.H., Bouwer, H.G., Hinrichs, D., and Pamer, E.G., 1997, A nonamer peptide derived from Listeria monocytogenes metalloprotease is presented to cytolytic T lymphocytes, Infect. Immun. 65: 5326–5329.PubMedGoogle Scholar
  7. Cardenas, L., and Clements, J.D., 1992, Oral immunization using live attenuated Salmonella spp. as carriers of foreign antigens, Clin. MicrobioL. Rev. 5: 328–342.PubMedGoogle Scholar
  8. Carroll, M.E.W., Jackett, P.S., Aber, V.R., and Lowrie, D.B., 1979, Phagolysosome formation, cyclic adenosine 3’-5’ monophosphate and the fate of Salmonella typhimurium in mouse peritoneal macrophages, J. Gen. Microbiol. 110: 421–429.Google Scholar
  9. Catic, A., Dietrich, G., Gentschev, I., Goebel, W, Kaufmann, S.H.E., and Hess, J., Enhanced major histocompatibility complex class I antigen presentation of macrophages mediated via DNA delivery or protein expression by attenuated Salmonella typhimurium in presence of phagosomal escape function, Submitted.Google Scholar
  10. Conry, R.M., LoBuglio, A.F., Kantor, J., Schlom, J., Loechel, E, Moore, S.E., Sumerel, L.A., Barlow, D.L., Abrams, S., and Curiel, D.T., 1994, Immune responses to carcinoembryonic antigen polynucleotide vaccine, Cancer Res. 54: 1164–1168.PubMedGoogle Scholar
  11. Corr, M., Lee, D.J., Carson, D.A., and Tighe, H., 1996, Gene vaccination with naked plasmid DNA: mechanism of CTL priming, J. Exp. Med. 184: 1555–1560.PubMedCrossRefGoogle Scholar
  12. Courvalin, P., Goussard, S., and Grillot-Courvalin, C., 1995, Gene transfer from bacteria to mammalian cells, CR Acad. Sci. 318: 1207–1202.Google Scholar
  13. Darji, A., Guzman, C.A., Gerstel, B., Wachholz, P., Timmis, K.N., Wehland, J., Chakraborty, T., and Weiss, S., 1997, Oral somatic transgene vaccination using attenuated S typhimurium, Cell 91: 765–775.PubMedCrossRefGoogle Scholar
  14. Davis, H.L., Brazolot Milian, C.L., and Watkins, S.C., 1997, Immune-mediated destruction of transfected muscle fibers after direct gene transfer with antigen-expressing plasmid DNA, Gene Ther. 4: 181–188.PubMedCrossRefGoogle Scholar
  15. Deck, R.R., DeWitt, C.M., Donnelly, J.J., Liu, M.A., and Ulmer, J.B., 1997, Characterization of humoral immune responses induced by an influenza hemagglutinin DNA vaccine, Vaccine 15: 71–78.PubMedCrossRefGoogle Scholar
  16. Dietrich, G., Bubert, A., Gentschev, I., Sokolovic, Z., Simm, A., Catic, A., Kaufmann, S.H.E., Hess, J., Szalay, A.A., and Goebel, W, 1998, Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes, Nature Biotechnol. 16: 181–185.CrossRefGoogle Scholar
  17. Doe, B., Selby, M., Barnett, S., Baenziger, J., and Walker, C.M., 1996, Induction of cytotxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells, Proc. Natl. Acad. Sci. USA 93: 8578–8583.PubMedCrossRefGoogle Scholar
  18. Donnelly, J.J., Friedman, A., Martinez, D., Montgomery, D.L., Shiver, J.W., Motzel, S.L., Ulmer, J.B., and Liu, M.A., 1995, Preclinical efficacy of a prototype DNA vaccine: enhanced protection against antigenic drift in influenza virus, Nature Med. 1: 583–587.PubMedCrossRefGoogle Scholar
  19. Donnelly, J.J., Ulmer, J.B., Shiver, J.W., and Liu, M.A., 1997, DNA Vaccines, Ann. Rev. Immunol. 15: 617–648.CrossRefGoogle Scholar
  20. Ertl, H.C.J., and Xiang, Z., 1996, Novel Vaccine Approaches, J. Immunol. 156: 3579–3582.PubMedGoogle Scholar
  21. Fynan, E.F., Webster, R.G., Fuller, D.H., Haynes, J.R., Santoro, J.C., and Robinson, H.L., 1993, DNA vaccines: protective immunizations by parenteral, mucosal and gene-gun inoculations, Proc. Natl. Acad. Sci. USA 90: 1478–1482.CrossRefGoogle Scholar
  22. Hackett, J., 1993, Use of Salmonella for heterologous gene expression and vaccine delivery systems, Curt: Opin. Biotechnol. 4: 611–615.CrossRefGoogle Scholar
  23. Hanke, T., Schneider, J., Gilbert, S.C., Hill, A.V.S., and McMichael, A., 1998, DNA multi-CTL epitope vaccines for HIV and Plasmodium falciparum: immunogenicity in mice, Vaccine 16: 426–435.PubMedCrossRefGoogle Scholar
  24. Harty, J.T., and Bevan, M.J.,1992, CD8 T cells specific for a single nonamer epitope of Liste-ria monocytogenes are protective in vivo, J. Exp. Med. 175: 1531–1538.Google Scholar
  25. Hassett, D.E., and Whitton, J.L., 1996, DNA immunization, Trends Microbiol. 4: 307–312.PubMedCrossRefGoogle Scholar
  26. Hassett, D.E., Zhang, J., and Whitton, J.L., 1997, Neonatal DNA immunization with a plasmid encoding an internal viral protein is effective in the presence of maternal antibodies and protects against subsequent viral challenge, J. Virol. 71: 7881–7888.PubMedGoogle Scholar
  27. Higgins, D.E., and Portnoy, D.A. 1998. Bacterial delivery of DNA evolves, Nature Biotechnol. 16: 138–139.CrossRefGoogle Scholar
  28. Hohlfeld, R., and Engel, A.G., 1994, The immunobiology of muscle, Immunol. Today 15: 269–273.PubMedCrossRefGoogle Scholar
  29. Hsu, C.H., Chua, K.Y., Tao, M.H., Lai, Y.L., Wu, H.D., Huang, S.K., and Hsieh, K.H., 1996, Immunoprophylaxis of allergen-induced immunoglobulin E synthesis and airway hyper-responsiveness in vivo by genetic immunization, Nature Med. 2: 540–544.PubMedCrossRefGoogle Scholar
  30. Huygen, K., Content, J., Denis, O., Montgomery, D.L., Yawman, A.M., Deck, R.R., DeWitt, C.M., Orme, I.M., Baldwin, S., D’Souza, C., Drowart, A., Lozes, E., Vandenbussche, P., Van Vooren, J.-P., Liu, M.A., and Ulmer, J.B., 1996, Immunogenicity and protective efficacy of a tuberculosis DNA vaccine, Nature Med. 2: 893–898.PubMedCrossRefGoogle Scholar
  31. Iwasaki, A., Torres, C.A.T., Ohashi, P.S., Robinson, H.L., and Barber, B.H., 1997, The dominant role of bone-marrow derived cells in CTL induction following plasmid DNA immunization at different sites, J. Immunol. 159: 11–14.PubMedGoogle Scholar
  32. Jones, D.H., Corris, S., McDonald, S., Clegg, J.C.S., and Farrar, G.H., 1997, Poly(DL-lactide-coglycolide)-encapsulated Plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration, Vaccine 15: 814–817.PubMedCrossRefGoogle Scholar
  33. Kaufmann, S.H.E., 1993, Immunity against intracellular bacteria, Annu. Rev. Immunol. 11: 129–163.PubMedCrossRefGoogle Scholar
  34. Kim, J.J., Bagarazzi, M.L., Trivedi, N., Hu, Y., Kazahaya, K., Wilson, D.M., Cicarelli, R., Chattergoon, M.A., Dang, K., Mahalingam, S., Chalian, A.A., Agadjanyan, M.G., Boyer, J.D., Wang, B., and Weiner, D.B., 1997, Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecules, Nature Biotechnol. 15: 641–646.CrossRefGoogle Scholar
  35. Klavinskis, L.S., Gao, L., Barnfield, C., Lehner, T., and Parker, S., 1997, Mucosal immunization with DNA-liposome complexes, Vaccine 15: 818–820.PubMedCrossRefGoogle Scholar
  36. Kuhöber, A., Pudollek, H.-P., Reifenberg, K., Chisari, F.V., Schlicht, H.-J., Reimann, J., and Schirmbeck, R., 1996, DNA immunization induces antibody and cytotxic T cell responses to Hepatitis B core antigen in H-2 mice, J. ImmunoL 156: 3687–3695.PubMedGoogle Scholar
  37. Ladel, C.H., Flesch, I.E.A., Arnoldi, J., and Kaufmann, S.H.E., 1994, Studies with deficient knock-out mice reveal impact of both MHC I and MHC II dependent T cell responses on Listeria monocytogenes infection, J. Immunol. 153: 3116–3122.PubMedGoogle Scholar
  38. Loessner, M.J., Wendlinger, G., and Scherer, S., 1995, Heterogenous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within siphoviral lysis casettes, Mol. Microbiol. 16: 1231–1241.PubMedCrossRefGoogle Scholar
  39. Lowrie, D.B., 1998, DNA vaccination exploits normal biology, Nature Med. 4: 147–148.PubMedCrossRefGoogle Scholar
  40. Martinez, X., Brandt, C., Sadallah, E, Tougne, C., Barrios, C., Wild, E, Dougan, G., Lambert, P.H., and Siegrist, C.A., 1997, DNA immunization circumvents deficient induction of T helper type 1 and cytotxic T lymphocyte responses in neonates and during early life, Proc. Natl. Acad. Sci. USA 94: 8726–8731.PubMedCrossRefGoogle Scholar
  41. Nakayama, K., Kelly, S.M., and Curtiss III, R., 1988, Construction of an Asd+ expression-cloning vector: stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain, Biotechnology 6: 693–697.Google Scholar
  42. Nichols, W.W., Ledwith, B.J., Manam, S.V., and Troilo, P.J., 1995, Potential DNA vaccine integration into the host cell genome, Ann. N.Y. Acad. Sci. 772: 30–39.PubMedCrossRefGoogle Scholar
  43. Pamer, E.G., Harty, T.J., and Bevan, M.J., 1991, Precise prediction of a dominant class I MHCrestricted epitope of Listeria monocytogenes, Nature 353: 852–855.PubMedCrossRefGoogle Scholar
  44. Pamer, E.G., 1994, Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope, J. Immunol. 152: 686–694.PubMedGoogle Scholar
  45. Pascual, D.W., Powell, R.J., Lewis, G.K., and Hone, D.M., 1997, Oral bacterial vaccine vectors for the delivery of subunit and nucleic acid vaccines to the organized lymphoid tissue of the intestine, Behr. Inst. Mitt. 98: 143–152.Google Scholar
  46. Pisetski, D.S., 1997, Immunostimulatory DNA: a clear and present danger? Nature Med. 3: 829–831.CrossRefGoogle Scholar
  47. Powell; R.J., Lewis, G.K., and Hone, D.M., 1996, Introduction of eukaryotic expression cassettes into animal cells using a bacterial vector delivery system, in: Vaccines 96: Molecular approaches to the control of infectious disease, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 183–187.Google Scholar
  48. Roman, M., Martin-Orozco, E., Goodman, J.S., Nguyen, M.-D., Sato, Y., Ronaghy, A., Kornbluth, R.S., Richman, D.D., Carson, D.A., and Raz, E., 1997, Immunostimulatory DNA sequences function as T helper-l-promoting adjuvants, Nature Med. 3: 849–854.PubMedCrossRefGoogle Scholar
  49. Sansonetti, P.J., Kopecko, D.J., and Formal, S.B., 1982, Involvement of a large plasmid in the invasive ability of Shigella flexneri, Infect. Immun. 35: 852–860.PubMedGoogle Scholar
  50. Sansonetti, P.J., Hale, T.L., Dammin, G.J., Kapper, C., Collins, H.H., and Formal, S.B., 1983, Alteration in the pathogenicity of Escherichia coli K-12 following the transfer of plasmid and chromosomal genes from Shigella flexneri, Infect. Immun. 39: 1392–1402.PubMedGoogle Scholar
  51. Schubbert, R., Renz, D., Schmitz, B., and Doerfler, W, 1997, Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via intestinal wall mucosa and can be covalently linked to mouse DNA, Proc. Natl. Acad. Sci. USA 94: 961–966.PubMedCrossRefGoogle Scholar
  52. Sedegah, M., Hedstrom, R., Hobart, P., and Hoffmann, S.L., 1994, Protection against malaria by immunization with circumsporozoite protein plasmid DNA, Proc. Natl. Acad. Sci. USA 90: 9866–9870.CrossRefGoogle Scholar
  53. Sher, A., and Coffman, R.L., 1992, Regulation of immunity to parasites by T cells and T cell-derived cytokines, Annu. Rev. Immunol. 10: 385–409.PubMedCrossRefGoogle Scholar
  54. Sizemore, D.R., Branstrom, A.A., and Sadoff, J.C., 1995, Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization, Science 270: 299–302.PubMedCrossRefGoogle Scholar
  55. Sizemore, D.R., Brandstrom, A.A., and Sadoff, J.C., 1997, Attenuated bacteria as a DNA delivery vehicle for DNA-mediated immunization, Vaccine 15: 804–807.PubMedCrossRefGoogle Scholar
  56. Smyth Templeton, N., Lasic, D.D., Frederik, P.M., Strey, H.H., Roberts, D.D., and Pavlakis, G.N., 1997, Improved DNA: liposome complexes for increased systemic delivery and gene expression, Nature Biotechnol. 15: 647–652.CrossRefGoogle Scholar
  57. Tang, D.C., DeVit, M., and Johnston, S.A., 1992, Genetic immunization is a simple method for eliciting an immune response, Nature 356: 152–154.PubMedCrossRefGoogle Scholar
  58. Tascon, R.E., Colston, M.J., Ragno, S., Stavropoulos, E., Gregory, D., and Lowrie, D.B., 1996, Vaccination against tuberculosis by DNA injection, Nature Med. 2: 888–892.PubMedCrossRefGoogle Scholar
  59. Tian, J., Clare-Salzier, M., Herschenfeld, A., Middleton, B., Newman, D., Mueller, R., Anta, S., Evans, C., Atkinson, M.A., Mullen, Y., Sarvetnick, N., Tobin, A.J., Lehmann, P.V., and Kaufmann, D.L., 1996, Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes-prone mice, Nature Med. 2: 1348–1353.PubMedCrossRefGoogle Scholar
  60. Torres, C.A.T., Iwasaki, A., Barber, B.H., and Robinson, H.L., 1997, Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations, J. Immunol. 158: 4529–4532.PubMedGoogle Scholar
  61. Ulmer, J.B., Donnelly, J.J., Parker, S.E., Rhodes, G.H., Feigner, P.L., Dwarki, V.J., Gromkowski, S.H., Deck, R.R., DeWitt, C.M., Friedman, A., Hawe, L.A., Leander, K.R., Martinez, D., Perry, H.C., Shiver, J.W., Montgomery, D.L., and Liu, M.L., 1993, Heterologous protection against influenza by injection of DNA encoding a viral protein, Science 259: 1745–1749.PubMedCrossRefGoogle Scholar
  62. Wang, B., Ugen, K.E., Srikantan, V., Agadjanvan, M.G., Dang, K., Rafaeli, Y., Sato, A.I., Boyer, J.D., Williams, W.V., and Weiner, D.B., 1993, Gene inoculation generates immune responses against human immunodefiency virus type 1, Proc. Natl. Acad. Sci. USA 90: 4156–4160.PubMedCrossRefGoogle Scholar
  63. Wild, J., Grüner, B., Metzger, K., Kuhröber, A., Pudollek, H.-P., Hauser, H.-J., Schirmbeck, R., and Reimann, J.,1998, Polyvalent vaccination against hepatitis B surface and core antigen using a dicistronic expression plasmid, Vaccine 16: 353–360.Google Scholar
  64. Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Feigner, P., 1990, Direct gene transfer into mouse muscle in vivo, Science 247: 1465–1468.PubMedCrossRefGoogle Scholar
  65. Wolff, J.A., Ludtke, J.J., Acsadi, G., Williams, P., and Jani, A., 1992, Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle, Hum. Mol. Gen. 1: 363–369.PubMedCrossRefGoogle Scholar
  66. Xiang, Z.Q., Spitalnik, S., Tran, M., Wunner, W.H., Cheng, J., and Ertl, H.C.J., 1994, Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus, Virology 199: 132–140.PubMedCrossRefGoogle Scholar
  67. Xiang, Z.Q., and Ertl, H.J.C., 1995, Manipulation of the immune response to a plasmidencoded viral antigen by coinoculation with plasmids expressing cytokines, Immunity 2: 129–135.PubMedCrossRefGoogle Scholar
  68. Xu, D., and Liew, F.Y., 1995, Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major, Immunology 84: 173–176.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Guido Dietrich
    • 1
    • 2
  • Werner Goebel
    • 3
  1. 1.Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für BiowissenschaftenUniversitat WürzburgWürzburgGermany
  2. 2.Preclinical Vaccine ResearchChiron Behring GmbH & CoMarburgGermany
  3. 3.Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für BiowissenschaftenUniversität WürzburgWürzburgGermany

Personalised recommendations