Skip to main content

Chlamydia Internalization and Intracellular Fate

  • Chapter
Bacterial Invasion into Eukaryotic Cells

Part of the book series: Subcellular Biochemistry ((SCBI,volume 33))

Abstract

Chlamydiae are obligate intracellular bacteria that cause a wide spectrum of disease in both humans and non-human species. Within the family Chlamydiaceae, there is a single genus and four species: Chlamydia trachomatis,Chlamydia psittaci, Chlamydia pneumoniae and Chlamydia pecorum. Diseases of humans caused by Chlamydia trachomatis include sexually transmitted diseases and endemic blinding trachoma. C. pneumoniae is a widespread cause of community-acquired pneumonia (Grayston et al., 1989) and is of intense current interest due to possible associations with atheroschlerosis (Kuo et al.,1995). C. psittaci is primarily a zoonosis that occasionally infects humans and C. percorum is also an animal pathogen but infections of humans have not been reported. There are at least 15 serologically distinguished serovars of C. trachomatis with several sub-types now recognized. Different serovars are associated with distinct diseases. Infections caused by serovars A-C are associated primarily with endemic blinding trachoma, the leading cause of preventable blindness worldwide. Infections caused by serovars D-K are typically localized to the genital tract and are the most common cause of sexually transmitted disease. The lymphogranuloma venereum (LGV) serovars, Ll, L2, and L3 also cause sexually transmitted infections, however, unlike diseases caused by the trachoma serovars which remain localized to mucosal epithelium, diseases caused by LGV are more systemic and invade the inguinal lymph nodes. Based upon the ability to cause systemic infections as well as differences in interactions with eukaryotic cells in vitro, the human C. trachomatis serovars are considered to comprise two biovars, trachoma and lymphogranuloma venereum (LGV) (Schachter and Caldwell, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, I., and Pearce, J.H., 1987, Association of Chlamydia trachomatis with mammalian and cultured insect cells lacking putative chlamydial receptors. Microb. Pathog. 2: 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Bannantine, J.P., Rockey, D.D., and Hackstadt, T., 1998, Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane. Mol. Microbiol. 28: 1017–1026.

    Article  PubMed  CAS  Google Scholar 

  • Barnewall, R.E., Rikihisa, Y., and Lee, E.H., 1997, Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor. Infect. Immun. 65: 1455–1461.

    CAS  Google Scholar 

  • Birkelund, S., Johnsen, H., and Christiansen, G., 1994, Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells. Infect. Immun. 62: 4900–4908.

    Google Scholar 

  • Bose, S.K., and Paul, R.G., 1982, Purification of Chlamydia trachomatis lymphogranuloma venereum elementary bodies and their interaction with HeLa cells. J. Gen. Microbiol. 128: 1371–1379.

    PubMed  CAS  Google Scholar 

  • Bose, S.K., Smith, G.B., and Paul, R.G., 1983, Influence of lectins, hexoses, and neuraminidase on the association of purified elementary bodies of Chlamydia trachomatis UW-31 with HeLa cells. Infect. Immun. 40: 1060–1067.

    PubMed  CAS  Google Scholar 

  • Byrne, G.I., 1976, Requirements for ingestion of Chlamydia psittaci by mouse fibroblasts (L cells). Infect. Immun. 14: 645–651.

    PubMed  CAS  Google Scholar 

  • Byrne, G.1.,1978, Kinetics of phagocytosis of Chlamydia psittaci by mouse fibroblasts (L cells): separation of the attachment and ingestion stages. Infect. Immun. 19: 607–612.

    Google Scholar 

  • Byrne, G.I., and Moulder, J.W., 1978, Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and HeLa cells. Infect. Immun. 19: 598–606.

    PubMed  CAS  Google Scholar 

  • Chen, J.C., and Stephens, R.S., 1997, Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. Microb. Pathog. 22: 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Clausen, J.D., Christiansen, G., Holst, H.U., and Birkelund, S., 1997, Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection. Mol. Microbiol. 25: 441–449.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, D.L., and Horwitz, M.A., 1995, Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J. Exp. Med. 181: 257–270.

    Article  PubMed  CAS  Google Scholar 

  • Davis, C.H., and Wyrick, P.B., 1997, Differences in the association of Chlamydia trachomatis serovar E and serovar L2 with epithelial cells in vitro may reflect biological differences in vivo. Infect. Immun. 65: 2914–2924.

    CAS  Google Scholar 

  • Desai, S.A., Krogstad, D.J., and McClesky, E.W., 1993, A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature. 362: 643–646.

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg, L.G., and Wyrick, P.B., 1981, Inhibition of phagolysosome fusion is localized to Chlamydia psittaci-laden vacuoles. Infect. Immun. 32: 889–896.

    CAS  Google Scholar 

  • Eissenberg, L.G., Wyrick, P.B., Davis, C.H., and Rumpp, J.W., 1983, Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion. Infect. Immun. 40: 741–751.

    PubMed  CAS  Google Scholar 

  • Falkow, S., Isberg, R.R., and Portnoy, D.A., 1992, The interaction of bacteria with mammalian cells. Annu. Rev. Cell Biol. 8: 333–363.

    Article  CAS  Google Scholar 

  • Fawaz, F.S., van Ooij, C., Homola, E., Mutka, S.C., and Engel, J.N., 1997, Infection with Chlamydia trachomatis alters the tyrosine phosphorylation and/or localization of several host cell proteins including cortactin. Infect. Immun. 65: 5301–5308.

    PubMed  CAS  Google Scholar 

  • Finlay, B.B., and Cossart, P., 1997, Exploitation of mammalian host cell functions by bacterial pathogens. Science. 276: 718–725.

    Article  PubMed  CAS  Google Scholar 

  • Friis, R.R., 1972, Interaction of L cells and Chlamydia psittaci: entry of the parasite and host responses to its development. J. Bacteriol. 110: 706–721.

    PubMed  CAS  Google Scholar 

  • Grayston, J.T., Kuo, C.-C., Campbell, L.A., and Wang, S.-P., 1989, Chlamydia pneumoniae sp. nov. for Chlamydia sp. strain TWAR. Int. J. Syst. Bacteriol. 39: 88–90.

    Google Scholar 

  • Gutierrez-Martin C.B., Ojcius, D.M., Hsia, R., Hellio, R., Bavoil, P.M., and Dautry-Varsat, A., 1997, Heparin-mediated inhibition of Chlamydia psittaci adherence to HeLa cells. Microb. Pathog. 22: 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Hackstadt, T., and Caldwell, H.D., 1985, Effect of proteolytic cleavage of surface-exposed proteins on infectivity of Chlamydia trachomatis. Infect. Immun. 48: 546–551.

    PubMed  CAS  Google Scholar 

  • Hackstadt, T., Rockey, D.D., Heinzen, R.A., and Scidmore, M.A., 1996, Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 15: 964–977.

    PubMed  CAS  Google Scholar 

  • Hackstadt, T., Scidmore, M.A., and Rockey, D.D., 1995, Lipid metabolism in Chlamydia trachomatis infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc. Natl. Acad. Sci. USA. 92: 4877–4881.

    Article  PubMed  CAS  Google Scholar 

  • Hackstadt, T., Scidmore-Carlson, M., and Fischer, E., 1998, Rapid dissociation of the Chlamydia trachomatis inclusion from endocytic compartments. In Proceedings of the ninth international symposium on Human Chlamydial infection. R. Stephens, G. Byrne, G. Christiansen, I. Clarke, J. Grayston, R. Rank, G. Ridgway, P. Saikku, J. Schachter, and W. Stamm, editors. International Chlamydia Symposium, San Francisco. 127–130.

    Google Scholar 

  • Hackstadt, T., and Williams, J.C., 1981, Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc. Natl. Acad. Sci. USA. 78: 3240–3244.

    Article  CAS  Google Scholar 

  • Hatch, T.P., Miceli, M., and Silverman, J.A., 1985, Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 162: 938–942.

    CAS  Google Scholar 

  • Hatch, T.P., Vance, Jr., D.W., and Al-Hossainy, E., 1981, Attachment of Chlamydia psittaci to formaldehyde-fixed and unfixed L cells. J. Gen. Microbiol. 125: 273–283.

    PubMed  CAS  Google Scholar 

  • Heinzen, R.A., and Hackstadt, T., 1997, The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low molecular weight compounds. Infect. Immun. 65: 1088–1094.

    PubMed  CAS  Google Scholar 

  • Heinzen, R.A., Scidmore, M.A., Rockey, D.D., and Hackstadt, T., 1996, Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 64: 796–809.

    PubMed  CAS  Google Scholar 

  • Hodinka, R.L., Davis, C.H., Choong, J., and Wyrick, P.B., 1988, Ultrastructural study of endocytosis of Chlamydia trachomatis by McCoy cells. Infect. Immun. 56: 1456–1463.

    PubMed  CAS  Google Scholar 

  • Hodinka, R.L., and Wyrick, P.B., 1986, Ultrastructural study of mode of entry of Chlamydia psittaci into L-929 cells. Infect. Immun. 54: 855–863.

    PubMed  CAS  Google Scholar 

  • Joseph,T.D., and Bose, S.K., 1991a, Further characterization of an outer membrane protein of Chlamydia trachomatis with cytadherence properties. FEMS Microbiol. Lett. 84: 167–172.

    Article  CAS  Google Scholar 

  • Joseph, T.D.; and Bose, S.K., 1991b, A heat-labile protein of Chlamydia trachomatis binds to HeLa cells and inhibits the adherence of chlamydiae. Proc. Natl. Acad. Sci. USA. 88: 4054–4058.

    Article  CAS  Google Scholar 

  • Krivan, H.C., Nilsson, B, Lingwood, C.A., and Ryu, H., 1991, Chlamydia trachomatis and Chlamydia pneumoniae bind specifically to phosphatidylethanolamine in HeLa cells and to GalNacbetal-4GalLbetal-4Glc sequences found in asialo-GM1 and asialo-GM2. Biochem. Biophys. Res. Commun. 175: 1082–1089.

    CAS  Google Scholar 

  • Kuo, C., Takahashi, N., Swanson, A.F., Ozeki, Y., and Hakomori, S., 1996, An N-linked highmannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells. J. Clin. Invest. 98: 2813–2818.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, C.-C., and Grayston, J.T., 1976, Interaction of Chlamydia trachomatis organisms and HeLa 229 cells. Infect. Immun. 13: 1103–1109.

    PubMed  CAS  Google Scholar 

  • Kuo, C.-C., Wang, S.-P., and Grayston, J.T., 1973, Effect of polycations, polyanions, and neuraminidase on the infectivity of trachoma-inclusion conjunctivitis and lymphogranuloma venereum organisms in HeLa cells: sialic acid residues as possible receptors for trachoma-inclusion conjunctivitis. Infect. Immun. 8: 74–79.

    PubMed  CAS  Google Scholar 

  • Kuo, C.C., Grayston, J.T., Campbell, L.A., Goo, Y.A., Wissler, R.W., and Benditt, E.P., 1995, Chlamydia pneumoniae(TWAR) in coronary arteries of young adults (15–34 years old). Proc. Natl. Acad. Sci., U.S.A. 92: 6911–6914.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.K., 1981, Interaction between a trachoma strain of Chlamydia trachomatis and mouse fibroblasts (McCoy cells) in the absence of centrifugation. Infect. Immun. 31: 584–591.

    PubMed  CAS  Google Scholar 

  • Levy, N.J., 1979, Wheat germ agglutinin blockage of chlamydial attachment sites: antagonism by N-Acetyl-D-glucosamine. Infect. Immun. 25: 946–953.

    PubMed  CAS  Google Scholar 

  • Levy, N.J., and Moulder, J.W., 1982, Attachment of cell walls of Chlamydia psittaci to mouse fibroblasts (L cells). Infect. Immun. 37: 1059–1065.

    PubMed  CAS  Google Scholar 

  • Lipsky, N.G., and Pagano, R.E., 1985, Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J. Cell Biol. 100: 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Majeed, M., Ernst, J.D., Magnusson, K.E., Kihlstrom, E., and Stendahl, 0., 1994, Selective translocation of annexins during intracellular redistribution of Chlamydia trachomatis in HeLa and McCoy cells. Infect. Immun. 62: 126–134.

    Google Scholar 

  • Majeed, M., Gustafsson, M., Kihlstrom, E., and Stendahl, 0., 1993, Roles of Cat’ and F-actin in intracellular aggregation of Chlamydia trachomatis in eucaryotic cells. Infect. Immun. 61: 1406–1414.

    PubMed  CAS  Google Scholar 

  • Majeed, M., and Kihlstrom, E., 1991, Mobilization of F-Actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eucaryotic cells. Infect. Immun. 59: 4465–4472.

    PubMed  CAS  Google Scholar 

  • Moulder, J.W., 1985, Comparative biology of intracellular parasitism. Microbiol. Rev. 49: 298–337.

    PubMed  CAS  Google Scholar 

  • Moulder, J.W., 1991, Interaction of chlamydiae and host cells in vitro. Microbiol. Rev. 55: 143–190.

    PubMed  CAS  Google Scholar 

  • Pagano, R.E., 1989, A Fluorescent derivative of ceramide: Physical properties and use in studying the golgi apparatus of animal cells. In Fluorescence microscopy of living cells in culture. Vol. 29. Y.-l. Wang and T.L. D., editors. Academic Press, inc., San Diego. 75–85.

    Google Scholar 

  • Prain, C.J., and Pearce, J.H., 1989, Ultrastructural studies on the intracellular fate of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and Chlamydia trachomatis (strain lymphogranuloma venereum 434): modulation of intracellular events and relationship with endocytic mechanism. J. Gen. Microbiol. 135: 2107–2123.

    PubMed  CAS  Google Scholar 

  • Reynolds, D.J., and Pearce, J.H., 1991, Endocytic mechanisms utilized by chlamydiae and their influence on induction of productive infection. Infect. Immun. 59: 3033–3039.

    PubMed  CAS  Google Scholar 

  • Ridderhof, J.C., and Barnes, R.C., 1989, Fusion of inclusions following superinfection of HeLa cells by two serovars of Chlamydia trachomatis. Infect. Immun. 57: 3189–3193.

    PubMed  CAS  Google Scholar 

  • Rockey, D.D., Grosenbach, D., Hruby, D.E., Peacock, M.G., Heinzen, R.A., and Hackstadt,T., 1997, Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol. Microbiol. 24: 217–228.

    Article  PubMed  CAS  Google Scholar 

  • Rockey, D.D., Heinzen, R.A., and Hackstadt, T., 1995, Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized to the inclusion membrane of infected cells. Mol. MicrobioL 15: 617–626.

    Article  PubMed  CAS  Google Scholar 

  • Rockey, D.D., and Rosquist, J.L., 1994, Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body. Infect. Immun. 62: 106–112.

    PubMed  CAS  Google Scholar 

  • Rothman, J.E., and Wieland, F.T., 1996, Protein sorting by transport vesicles. Science. 272: 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Schachter, J., and Caldwell, H.D., 1980, Chlamydiae. Annu. Rev. MicrobioL 34: 285–309.

    Article  PubMed  CAS  Google Scholar 

  • Schmiel, D.H., Knight, S.T., Raulston, J.E., Choong, J., Davis, C.H., and Wyrick, P.B., 1991, Recombinant Escherichia coli clones expressing Chlamydia trachomatis gene products attach to human endometrial epithelial cells. Infect. Immun. 59: 4001–4012.

    PubMed  CAS  Google Scholar 

  • Schmiel, D.H., Raulston, J.E., Fox, E., and Wyrick, P.B., 1995, Characteristization, expression and envelope association of a Chlamydia trachomatis 28kDa protein. Microb. Pathogen. 19: 227–236.

    Article  CAS  Google Scholar 

  • Schramm, N., Bagnell, C.R., and Wyrick, P.B., 1996, Vesicles containing Chlamydia trachomatis serovar L2 remain above pH 6 within HEC-1B cells. Infect. and Immun. 64: 1208–1214.

    CAS  Google Scholar 

  • Schramm, N., and Wyrick, P.B., 1995, Cytoskeletal requirements in Chlamydia trachomatis infection of host cells. Infect. Immun. 63: 324–332.

    PubMed  CAS  Google Scholar 

  • Schwab, J.C., Beckers, C.J.M., and Joiner, K.A., 1994, The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proc. Natl. Acad. Sci. USA. 91: 509–513.

    Article  CAS  Google Scholar 

  • Scidmore, M.A., Fischer, E.R., and Hackstadt, T., 1996a, Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J. Cell Biol. 134: 363–374.

    Article  PubMed  CAS  Google Scholar 

  • Scidmore, M.A., Rockey, D.D., Fischer, E.R., Heinzen, R.A., and Hackstadt, T., 1996b, Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect. Immun. 64: 5366–5372.

    PubMed  CAS  Google Scholar 

  • Scidmore-Carlson, M., Shaw, E.I.,. Dooley, C.A., and Hackstadt, T., 1998, Identification and characterization of putative Chlamydia trachomatis inclusion membrane proteins. In Proceedings of the ninth international symposium on Human Chlamydia! infection. R.S. Stephens, G.I. Byrne, G. Christiansen, I.N. Clarke, J.T. Grayston, R.G. Rank, G.L. Ridgway, P. Sikku, J. Schachter, and W.E. Stamm, editors. International Chlamydia Symposium, San Frnacisco. 103-106.

    Google Scholar 

  • Soderlund, G., and Kihistrom, E., 1983a, Attachment and internalization of a Chlamydia trachomatis lymphogranuloma venereum strain by McCoy cells: kinetics of infectivity and effect of lectins and carbohydrates. Infect. Immun. 42: 930–935.

    PubMed  CAS  Google Scholar 

  • Soderlund, G., and Kihistrom, E., 1983b, Effect of methylamine and monodansylcadaverine on the susceptibility of McCoy cells to Chlamydia trachomatis infection. Infect. Immun. 40: 534–541.

    PubMed  CAS  Google Scholar 

  • Stuart, E.S., Wyrick, P.B., Choong, J., Stoler, S.B., and MacDonald, A.B., 1991, Examination of chlamydial glycolipid with monoclonal antibodies: cellular distribution and epitope binding. Immunology. 74: 740–747.

    PubMed  CAS  Google Scholar 

  • Su, H., Raymond, L., Rockey, D.D., Fischer, E., Hackstadt, T., and Caldwell, H.D., 1996, A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 93: 11143–11148.

    Article  CAS  Google Scholar 

  • Su, H., Spangrude, G.J., and Caldwell, H.D., 1991, Expression of Fc gammaRlll on HeLa 229 cells: Possible effect on in vitro neutralization of Chlamydia trachomatis. Infect. Immun. 59: 3811–3814.

    PubMed  CAS  Google Scholar 

  • Su, H., Watkins, N.G., Zhang, Y.-X., and Caldwell, H.D., 1990, Chlamydia trachomatis-host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect. Immun. 58: 1017–1025.

    PubMed  CAS  Google Scholar 

  • Su, H., Zhang, Y.-X., Barrera, O., Watkins, N.G., and Caldwell, H.D., 1988, Differential effect of trypsin on infectivity of Chlamydia trachomatis: loss of infectivity requires cleavage of major outer membrane protein variable domains II and IV. Infect. Immun. 56: 2094–2100.

    PubMed  CAS  Google Scholar 

  • Swanson, A.F., Ezekowitz, R.A., Lee, A., and Kuo, C.-C., 1998, Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis. Infect Immun. 66: 1607–1612.

    PubMed  CAS  Google Scholar 

  • Swanson,A.F., and Kuo, C-C., 1991, The characterization of lectin-binding proteins of Chlamydia trachomatis as glycoproteins. Microb. Pathogen. 10: 465–473.

    Article  CAS  Google Scholar 

  • Swanson, A.F., and Kuo, C.-C., 1994a, The 32-kDa glycoprotein of Chlamydia trachomatis is an acidic protein that may be involved in the attachment process. FEMS Microbiol. Lett. 123: 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, A.F., and Kuo, C.-C., 1994b, Binding of the glycan of the major outer membrane protein of Chlamydia trachomatis to HeLa cells. Infect. Immun. 62: 24–28.

    PubMed  CAS  Google Scholar 

  • Taraska,T., Ward, D.M., Ajioka, R.S., Wyrick, P.B., Davis-Kaplan, S.R., Davis, C.H., and Kaplan, J., 1996, The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins. Infect. Immun. 64: 3713–3727.

    PubMed  CAS  Google Scholar 

  • Ting, L.-M., Hsia, R.-C., Haidaris, C.G., and Bavoil, P.M., 1995, Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cells surface. Infect. Immun. 63: 3600–3608.

    PubMed  CAS  Google Scholar 

  • Tribby, I.I.E., Friis, R.R., and Moulder, J.W., 1973, Effect of chloramphenicol, rifampicin, and nalidixic acid on Chlamydia psittaci growing in L cells. J. Infect. Dis. 127: 155–163.

    Article  PubMed  CAS  Google Scholar 

  • van Ooij, C., Apodaca, G., and Engel, J., 1997, Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. Infect. Immun. 65: 758–766.

    PubMed  Google Scholar 

  • Vretou, E., Goswami, P.C., and Bose, S.K., 1989, Adherence of multiple serovars of Chlamydia trachomatis to a common receptor on HeLa and McCoy cells is mediated by thermolabile protein(s). J. Gen. Microbiol. 135: 3229–3237.

    PubMed  CAS  Google Scholar 

  • Ward, M.E., and Murray, A., 1984, Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis. J. Gen. Microbiol. 130: 1765–1780.

    PubMed  CAS  Google Scholar 

  • Wyrick, P.B., and Brownridge, E.A., 1978, Growth of Chlamydia psittaci in macrophages. Infect. Immun. 19: 1054–1060.

    PubMed  CAS  Google Scholar 

  • Wyrick, P.B., Choong, J., Davis, C.H., Knight, S.T., Royal, M.O., Maslow, A.S., and Bagnell, C.R., 1989, Entry of genital Chlamydial trachomatis into polarized human epithelial cells. Infect. Immun. 57: 2378–2389.

    PubMed  CAS  Google Scholar 

  • Xu, S., Cooper, A., Sturgill-Koszycki, S., van Heyningen, T., Chatterjee, D., Orme, I., Allen, P., and Russell, D.G., 1994, Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol. 153: 2568–2578.

    PubMed  CAS  Google Scholar 

  • Zhang, J.P., and Stephens, R.S., 1992, Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell. 69: 861–869.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scidmore-Carlson, M., Hackstadt, T. (2000). Chlamydia Internalization and Intracellular Fate. In: Oelschlaeger, T.A., Hacker, J. (eds) Bacterial Invasion into Eukaryotic Cells. Subcellular Biochemistry, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4580-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4580-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3330-0

  • Online ISBN: 978-1-4757-4580-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics