Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 33))

Abstract

Colonization of legume roots by compatible soil bacteria of the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium (collectively known as rhizobia) leads to the formation of specialized nitrogen-fixing organs called nodules. Signals produced by both partners control specificity. Flavonoids found in root exudates trigger the expression of the rhizobial genes (nod, nol, noe) required for nodulation (Fellay et al., 1995). Many nod loci are involved in the synthesis and secretion of Nod-factors, a family of complex lipo-chito-oligosaccharides (Hanin et al., 1998b; Dénarié et al., 1996). Nod-factors initiate division of nodule meristems and permit entry of rhizobia into the host-plant (Relic et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, M., Amemura, A., and Higashi, S., 1982, Studies on cyclic 13-(1,2)-glucan obtained from periplasmic space of Rhizobium trifolii cells, Plant Soil 64: 315–324.

    Article  CAS  Google Scholar 

  • Alfano, J.R., and Collmer, A., 1997, The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death, J. Bacteriol. 179 (18): 5655–5662.

    PubMed  CAS  Google Scholar 

  • Allaway, D., Jeyaretnam, B., Carlson, R.W., and Poole, P.S., 1996, Genetic and chemical characterization of a mutant that disrupts synthesis of the lipopolysaccharide core tetrasaccharide in Rhizobium leguminosarum, J. Bacteriol. 178 (21): 6403–6406.

    PubMed  CAS  Google Scholar 

  • Aman, P., McNeil, M., Franzen, L.-E., Darvill, A.G., and Albersheim, P., 1981, Structural elucidation, using HPLC-MS and GLC-MS, of the acidic exopolysaccharide secreted by Rhizobium meliloti strain Rm1021. Carbohydr. Res. 95: 263–282.

    Article  CAS  Google Scholar 

  • Battisti, L., Lara, J.C., and Leigh, J.A., 1992, Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa, Proc. Natl. Acad. Sci. USA 89 (12): 5625–5629.

    Article  PubMed  CAS  Google Scholar 

  • Becker, A., Kleickmann, A., Arnold, W, and Ptihler, A., 1993, Analysis of the Rhizobium meliloti exoHlexoKlexoL fragment: ExoK shows homology to excreted endo-13–1,3–1,4 glucanases and ExoH resembles membrane proteins, Mol. Gen. Genet. 238 (1–2): 145–154.

    PubMed  CAS  Google Scholar 

  • Becker, A., Ruberg, S., Kuster, H., Roxlau, A.A., Keller, M., Ivashina, T., Cheng, H.P., Walker, G.C., and Ptihler, A., 1997, The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded products, J. Bacteriol. 179 (4): 1375–1384.

    PubMed  CAS  Google Scholar 

  • Becquart-de-Kozak, I., Reuhs, B.L., Buffard, D., Breda, C., Kim, J.S., Esnault, R., and Kondorosi A., 1997, Role of the K-antigen subgroup of capsular polysaccharides in the early recognition process between Rhizobium meliloti and alfalfa leaves, Mol. Plant-Microbe Interact. 10 (1): 114–123.

    Article  CAS  Google Scholar 

  • Bellato, C.M., Balatti, P.A., Pueppke, S.G., and Krishnan, H.B., 1996, Proteins from cells of Rhizobium fredii bind to DNA sequences preceding nolX, a flavonoid-inducible nod gene that is not associated with a nod box, Mol. Plant-Microbe Interact. 9 (6): 457–463.

    Article  PubMed  CAS  Google Scholar 

  • Bellato, C., Krishnan, H.B., Cubo, T., Temprano, E, and Pueppke, S.G., 1997, The soybean cultivar specificity gene nolX is present, expressed in a nodD-dependent manner, and of symbiotic significance in cultivar-non specific strains of Rhizobium (Sinorhizobium) fredii, Microbiol. 143: 1381–1388.

    Article  CAS  Google Scholar 

  • Bhagwat, A.A., Gross, K.C.,Tully, R.E., and Keister, D.L.,1996, I-glucan synthesis in Bradyrhizobium japonicum: characterization of a new locus (ndvC) influencing 13-(1,6) linkages, J. Bacteriol. 178(15):4635–4642.

    Google Scholar 

  • Bhagwat, A.A., ThIly, R.E., and Keister, D.L., 1992, Isolation and characterization of an ndvB locus from Rhizobium fredii, Mol. Microbiol. 6 (15): 2159–2165.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove,A.J., Beer, S.V., Bonas, U., Boucher, C.A., Collmer, A., Coplin, D.L., Cornelis, G.R., Huang, H.C., Hutcheson, S.W., Panopoulos, N.J., and Van Gijsegem, E, 1996, Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria, Mol. Microbiol. 20 (3): 681–683.

    Article  Google Scholar 

  • Borthakur, D., Barbur, C.E., Lamb, J.W., Daniels, M.J., Downie, J.A., and Johnston, A.W.B., 1986, A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not of beans by R. phaseoli and is corrected by cloned DNA from Rhizobium or the phytopathogen Xanthomonas, Mol. Gen. Genet. 203 (2): 320–323.

    Article  CAS  Google Scholar 

  • Breedveld, M.W., and Miller, K.J., 1994, Cyclic ß-glucans of members of the family Rhizobiaceae, Microbiol. Rev. 58 (2): 145–161.

    PubMed  CAS  Google Scholar 

  • Breedveld, M.W., Zevenhuizen, L.P.T.M., and Zehnder, A.J.B., 1990, Excessive excretion of cyclic 13-(1,2)-glucans by Rhizobium trifolii TA-1, Appl. Environ. Microbiol. 56(7): 20802086.

    Google Scholar 

  • Brewin, N.J., 1991, Development of the legume root nodule, Annu. Rev. Cell Biol. 7: 191–226.

    Article  PubMed  CAS  Google Scholar 

  • Brink, B.A., Miller, J., Carlson, R.W., and Noel, K.D., 1990, Expression of Rhizobium leguminosarum CFN42 genes for lipopolysaccharide in strains derived from different R. leguminosarum soil isolates, J. Bacteriol. 172 (2): 548–555.

    PubMed  CAS  Google Scholar 

  • Carlson, R.W., Bhat, U.R., and Reuhs, B., 1992, Rhizobium lipopolysaccharides: Their structure and evidence for their importance in the nitrogen-fixing symbiotic infection of their host legumes, in: Plant Biotechnology and Development, (P.M. Gresshoff, ed.), CRC Press, Boca Raton, pp. 33–44.

    Google Scholar 

  • Cava, J.R., Elias, P.M.,Throwski, D.A., and Noel, K.D.,1989, Rhizobium leguminosarum CFN42 genetic regions encoding lipopolysaccharide structures essential for complete nodule development on bean plants, J. Bacteriol. 171(1):8–15.

    Google Scholar 

  • Cava, J.R., Tao, H., and Noel, K.D., 1990, Mapping of complementation groups within a Rhizobium leguminosarum CFN42 chromosomal region required for lipopolysaccharide synthesis, Mol. Gen. Genet. 221 (1): 125–128.

    Article  CAS  Google Scholar 

  • Chakravorty, A.K., Zurowski, W., Shine, J., and Rolfe, B.G., 1982, Symbiotic nitrogen fixation: molecular cloning of Rhizobium genes involved in exopolysaccharide synthesis and effective nodulation, J. Mol. Appl. Genet. 1 (6): 585–596.

    PubMed  CAS  Google Scholar 

  • Chen, H., Batley, M., Redmond, J., and Rolfe, B.G., 1985, Alteration of the effective nodulation properties of a fast-growing broad host range Rhizobium due to changes in exopolysaccharide synthesis, J. Plant Physio1. 120: 331–349.

    Article  CAS  Google Scholar 

  • Clover, R.H., Kieber, J., and Signer, E.R., 1989, Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis, J. Bacteriol. 171 (7): 3961–3967.

    PubMed  CAS  Google Scholar 

  • Cohn, J., Day, R.B., and Stacey, G., 1998, Legume nodule organogenesis, Trends Plant Sci. 3 (3): 105–110.

    Article  Google Scholar 

  • de Maagd, R.A., Rao, A.S., Mulders, I.H.M., Goosen-de Roo, L., van Loosdrecht, M.C.M., Wijffelman, C.A., and Lugtenberg, B.J.J, 1989a, Isolation and characterization of mutants of Rhizobium leguminosarum by. viciae 248 with altered lipopolysaccharides: Possible role of surface charge or hydrophobicity in bacterial release from the infection thread, J. Bacteriol. 171 (2): 1143–1150.

    PubMed  CAS  Google Scholar 

  • de Maagd, R.A., Wijfjes, A.H., Spaink, H.P., Ruiz-Sainz, J.E., Wijffelman, C.A., Okker, R.J., and Lugtenberg, B.J., 1989b, nodO,a new nod gene of the Rhizobium leguminosarum biovar viciae sym plasmid pRL1J1, encodes a secreted protein, J. Bacteriol. 171(12):6764–6770.

    Google Scholar 

  • Demont, N., Debellé, R., Aurelle, H., Dénarié, J., and Promé, J.-C., 1993, Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic. nodulation factors, J. Biot Chem. 268 (27): 20134–20142.

    CAS  Google Scholar 

  • Dénarié, J., Debellé, F., and Rosenberg, C., 1992, Signalling and host range variation in nodulation, Annu. Rev. Microbiol. 46: 497–531.

    Article  PubMed  Google Scholar 

  • Dénarié, J., Debellé, F., and Promé, J.-C., 1996, Rhizobium lipo-chitooligosaccharide nodulation factors. signaling molecules mediating recognition and morphogenesis, Annu. Rev. Biochem. 65: 503–535.

    Google Scholar 

  • Diebold, R., and Noel, K.D., 1989, Rhizobium leguminosarum exopolysaccharide mutants: biochemical and genetic analyses and symbiotic behavior on three hosts, J. Bacteriol. 171 (9): 4821–4830.

    CAS  Google Scholar 

  • Djordjevic, S.P., Chen, H., Batley, M., Redmond, J.W., and Rolfe, B.G., 1987, Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides, J. Bacteriol. 169 (1): 53–60.

    PubMed  CAS  Google Scholar 

  • Downie, J.A., and Surin, B.P., 1990, Either of two nod gene loci can complement the nodulation defect of a nod deletion mutant of Rhizobium leguminosarum by viciae, Mol. Gen. Genet. 222 (1): 81–86.

    PubMed  CAS  Google Scholar 

  • Dylan, T., Ielpi, L., Stanfield, S., Kashyap, L., Douglas, C., Yanofsky, M., Nester, E., Helinski, D.R., and Ditta, G., 1986, Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA 83 (12): 4403–4407.

    CAS  Google Scholar 

  • Dylan, T., Helinski, D.R, and Ditta, G.S., 1990a, Hypoosmoticadaptation in Rhizobium meliloti requires ß-(1,2)-glucan, J. Bacteriol. 172 (3): 1400–1408.

    PubMed  CAS  Google Scholar 

  • Dylan, T., Nagpal, P., Helinski, D.R., and Ditta, G.S., 1990b, Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants, J. Bacteriol. 172 (3): 1409–1417.

    PubMed  CAS  Google Scholar 

  • Economou, A., Hamilton, W.D.O., Johnston, A.W.B., and Downie, J.A., 1990, The Rhizobium nodulation gene nodO encodes a Cat’-binding protein that is exported without N-terminal cleavage and is homologous to haemolysin and related proteins, EMBO J. 9 (2): 349–354.

    PubMed  CAS  Google Scholar 

  • Economou, A., Davies, A.E., Johnston, A.W.B., and Downie, J.A., 1994, The Rhizobium leguminosarum biovar viciae nodO gene cari enable a nodE mutant of Rhizobium leguminosarum biovar trifolii to nodulate vetch, Microbiol. 140: 2341–2347.

    Article  CAS  Google Scholar 

  • Ehrhardt, D.W., Atkinson, E.M., and Long, S.R., 1992, Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors, Science 256: 998–1000.

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt, D.W., Wais, R., and Long, S.R., 1996, Calcium spiking in plant root hairs responding to Rhizobium nodulation signals, Cell 85 (5): 673–681.

    Article  PubMed  CAS  Google Scholar 

  • Fellay, R., Rochepeau, P., Relic, B., and Broughton, W.J., 1995, Signals to and emanating from Rhizobium largely control symbiotic specificity, in: Pathogenesis and Host Specificity in Plant Diseases. Histopathological, Biochemical, Genetic and Molecular Bases, Volume 1 ( U.S. Singh, R.P. Singh, and K. Kohmoto, eds.), Pergamon Elsevier Science Ltd., Oxford, pp. 199–220.

    Google Scholar 

  • Fellé, H.H., Kondorosi, E., Kondorosi, A., and Schultze, M., 1996, Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochitooligosaccharide signals, Plant J. 10 (2): 295–301.

    Article  Google Scholar 

  • Finnie, C., Hartley, N.M., Findlay, K.C., and Downie J.A., 1997, The Rhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification, Mol. Microbiol. 25 (1): 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Finnie, C., Zorreguieta, A., Hartley, N.M., Downie, J.A., 1998, Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif, J. Bacteriol. 180 (7): 1691–1699.

    PubMed  CAS  Google Scholar 

  • Fischer, R.E, and Long, S.R., 1992, Rhizobium-plant signal exchange, Nature 357: 655–660.

    Google Scholar 

  • Forsberg, L.S., and Reuhs, B.L., 1997, Structural characterization of the K antigens from Rhizobium fredii USDA257: evidence for a common structural motif, with strain-specific variation, in the capsular polysaccharides of Rhizobium spp., J. Bacteriol. 179(17): 53665371.

    Google Scholar 

  • Freiberg, C., Fellay, R., Bairoch, A., Broughton, W.J., Rosenthal, A., and Perret, X., 1997, Molecular basis of symbiosis between Rhizobium and legumes, Nature 387: 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-de los Santos, A., and Brom, S.,1997, Characterization of two plasmid-borne 1ps ß loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants, Mol. Plant-Microbe Interact. 10(7):891–902.

    Google Scholar 

  • Gehring, C.A., Irving, H.R., Kabbara, A.A., Parish, R.W., Boukli, N.M., and Broughton, W.J., 1997, Rapid, plateau-like increases in intracellular free calcium are associated with Nodfactor-induced root-hair deformation, Mol. Plant-Microbe Interact. 10 (7): 791–802.

    Article  CAS  Google Scholar 

  • Geiger, O., Weissborn, A.C., Kennedy, E.P., 1991, Biosynthesis and excretion of cyclic glucans by Rhizobium meliloti 1021, J. Bacteriol. 173 (9): 3021–3024.

    PubMed  CAS  Google Scholar 

  • Glazebrook, J., and Walker, G.C., 1989, A novel exopolysaccharide can function in place of the Calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti, Cell 56 (4): 661–672.

    Article  PubMed  CAS  Google Scholar 

  • Glucksmann, M.A., Reuber, T.L., and Walker, G.C., 1993, Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: A model for succinoglycan biosynthesis, J. Bacteriol. 175 (21): 7045–7055.

    PubMed  CAS  Google Scholar 

  • Gonzàles, J.E., Reuhs, B.L, and Walker, G.C., 1996, Low molecular weight EPS lI of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc. Natl. Acad. Sci. USA 93 (16): 8636–8641.

    Article  Google Scholar 

  • Gray, J.X., Zhan, H., Levery, S.B., Battisti, L., Rolfe, B.G., and Leigh, J.A., 1991, Heterologous exopolysaccharide production in Rhizobium sp. strain NGR234 and consequences for nodule development, J. BacterioL 173 (10): 3066–3077.

    PubMed  CAS  Google Scholar 

  • Hanin, M., Jabbouri, S., Broughton, W.J., and Fellay, R., 1998a, SyrM1 of Rhizobium sp. NGR234 activates transcription of symbiotic loci and controls the level of sulfated Nod factors, MoL Plant-Microbe Interact. 11 (5): 343–350.

    Article  CAS  Google Scholar 

  • Hanin, M., Jabbouri, S., Broughton, W.J., Fellay, R., and Quesada-Vincens, D., 19986, Molecular aspects of host-specific nodulation, in: Plant-Microbe Interactions,(G. Stacey and N.T. Keen, eds.), American Phytopathology Society, St Paul, MN, in press.

    Google Scholar 

  • Her, G.-R., Glazebrook, J., Walker, G.C., and Reinhold, V.N., 1990, Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm1021. Carbohydr. Res. 198: 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, A.M., 1992, Developmental biology of legume nodulation, New Phytol. 122: 211–237.

    Article  Google Scholar 

  • Hotter, G.S., and Scott, D.B., 1991, Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host, J. Bacteriol. 173 (2): 851–859.

    PubMed  CAS  Google Scholar 

  • Hueck, C.J., 1998, Type III protein secretion systems in bacterial pathogens of animals and plants, MicrobioL Mol. Biol. Rev. 62 (2): 379–433.

    PubMed  CAS  Google Scholar 

  • Ielpi, L., Dylan, T., Ditta, G.S., Helinski, D.R., and Stanfield, S.W., 1990, The ndvB locus of Rhizobium meliloti encodes a 319kDa protein involved in the production of (3-(1,2)glucan, J. Biol. Chem. 265 (5): 2843–2851.

    PubMed  CAS  Google Scholar 

  • Jann, B., and Jann, K., 1990, Structure and biosynthesis of the capsular antigens of Escherichia coli, Curr. Top. Microbiol. ImmunoL 150: 19–42.

    Article  PubMed  CAS  Google Scholar 

  • Kannenberg, E.L., Rathbun, E.A., and Brewin, N.J., 1992, Molecular dissection of structure and function in the lipopolysaccharide of Rhizobium leguminosarum strain 3841 using monoclonal antibodies and genetic analysis, Mol. Microbio. 6 (17): 2477–2487.

    Article  CAS  Google Scholar 

  • Kijne, J.W., 1992, The Rhizobium infection process, in: Biological Nitrogen Fixation, ( G. Stacey, R.H. Burris, and H.J. Evans, eds.), Chapman and Hall, New York, pp. 349–398.

    Google Scholar 

  • Kim, C.H., Thlly, R.E., and Keister, D.L., 1989, Exopolysaccharide-deficient mutants of Rhizobium fredii HH303 which are symbiotically effective, Appl. Environ. Microbio!. 55 (7): 1852–1854.

    CAS  Google Scholar 

  • Kiss, E., Reuhs, B.L., Kim, J.S., Kereszt, A., Petrovics, G., Putnoky, P., Dusha, I., Carlson, R.W., and Kondorosi, A., 1997, The rkpGHI and -J genes are involved in capsular polysaccharide production by Rhizobium meliloti, J. Bacterial. 179 (7): 2132–2140.

    CAS  Google Scholar 

  • Krishnan, H.B., Kuo, C.-I., and Pueppke, S.G., 1995, Elaboration of flavonoid-induced proteins by the nitrogen-fixing soybean symbiont Rhizobium fredii is regulated by both nodDI and nodD2, and is dependent on the cultivar-specificity locus, noIXWBTUV, Microbial. 141: 2245–2251.

    CAS  Google Scholar 

  • Lee, C.A., 1997, Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells?, Trends Microbiol. 5 (4): 149–156.

    Article  Google Scholar 

  • Leigh, J.A., and Lee, C.C., 1988, Characterization of polysaccharides of Rhizobium meliloti exo mutants that form ineffective nodules, J. Bacteriol. 170 (8): 3327–3332.

    PubMed  CAS  Google Scholar 

  • Leigh, J.A., and Walker, G.C., 1994, Exopolysaccharides of Rhizobium: Synthesis, regulation and symbiotic function, Trends Genet. 10 (2): 63–67.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, J.A., Signer, E.R., and Walker, G.C., 1985, Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules, Proc. Natl. Acad. Sci. USA 82(18): 62316235.

    Google Scholar 

  • Leigh, J.A., Reed, J.W., Hanks, J.F., Hirsch, A.M., and Walker, G.C., 1987, Rhizobium meliloti mutants that fail to succinylate their Calcofluor-bonding exopolysaccharide are deficient in nodule invasion, Cell 51 (4): 579–587.

    CAS  Google Scholar 

  • Lindgren, P.B., Peet, R.C., and Panopoulos, N.J., 1986, Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity of non host plants, J. Bacteriol. 168 (2): 512–522.

    PubMed  CAS  Google Scholar 

  • Meinhardt, L.W., Krishnan, H.B., Balatti, P.A., and Pueppke, S.G., 1993, Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257, Mol. Microbiol. 9 (1): 17–29.

    Article  PubMed  CAS  Google Scholar 

  • Mithófer, A., Bhagwat, A.A., Feger, M., and Ebel, J., 1996, Suppression of fungal ßglucan-induced plant defence in soybean (Glycine max L.) by cyclic 1,3–1,6–13-glucans from the symbiont Bradyrhizobium japonicum, Planta 199 (2): 270–275.

    Article  Google Scholar 

  • Mylona, P., Pawlowski, K., and Bisseling, T., 1995, Symbiotic nitrogen fixation, Plant Cell 7 (7): 869–885.

    PubMed  CAS  Google Scholar 

  • Nagpal, P., Khanuja, S.P.S., and Stanfield, S.W., 1992, Suppression of the ndv mutant of Rhizobium meliloti by cloned exo genes, Mol. Microbial. 6 (4): 479–488.

    Article  CAS  Google Scholar 

  • Niehaus, K., Kapp, D., and Pühler, A., 1993, Plant defence and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti mutant, Planta 190 (4): 415–425.

    CAS  Google Scholar 

  • Niehaus, K., Baier, R., Becker, A., and Pühler, A., 1996, Symbiotic suppression of the Medicago sativa defense system-the key of Rhizobium meliloti to enter the host plant?, in: Biology of Plant-Microbe Interactions, ( G. Stacey, B. Mullin, and M. Gresshoff, eds.), International Society for Molecular Plant-Microbe Interactions, St Paul, MN, pp. 349–352.

    Google Scholar 

  • Noel, K.D., VandenBosch, K.A., and Kulpaca, B., 1986, Mutations in Rhizobium phaseoli that lead to arrested development of infection threads, J. Bacteriol. 168 (3): 1392–1401.

    PubMed  CAS  Google Scholar 

  • Olsen, P., Collins, M., and Rice, W, 1992, Surface antigens present on vegetative Rhizobium meliloti cells may be diminished or absent when the cells are in the bacteroid form, Can. J. Microbiol. 38: 506–509.

    Article  Google Scholar 

  • Palacios, R., Boistard, P., DAvila, G., Fonstein., M., Giittfert, M., Perret, X., Ronson, C., and Sobral, B., 1998, Genome structure in nitrogen-fixing organisms, in: Biological Nitrogen Fixation for the 21st Century, ( C. Elmerich, A. Kondorosi, and W.E. Newton, eds.), Kluwer Academic Pub., Dordrecht, pp. 541–547.

    Google Scholar 

  • Parniske, M., Kosch, K., Werner, D., and Müller, P., 1993, ExoB mutants of Bradyrhizobium japonicum with reduced competitivity on Glycine max, Mol. Plant-Microbe Interact. 6 (1): 99–106.

    Article  CAS  Google Scholar 

  • Parniske, M., Schmidt, P.E., Kosch, K., and Müller, P., 1994, Plant defense responses of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum, Mol. Plant-Microbe Interact. 7 (5): 631–638.

    Article  CAS  Google Scholar 

  • Parveen, N., Webb, D.T., and Borthakur, D., 1997, The symbiotic phenotypes of exopolysaccharide-defective mutants of Rhizobium sp. strain TAL1145 do not differ on determinate-and indeterminate-nodulating tree legumes, Microbiol. 143: 1959–1967.

    Article  CAS  Google Scholar 

  • Perotto, S., Brewin, N.J., and Kannenberg, E.L.,1994, Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharidedefective mutants of Rhizobium leguminosarum strain 3841, Mol. Plant-Microbe Interact. 7(1):99–112.

    Google Scholar 

  • Petrovics, G., Putnoky, P., Reuhs, B., Kim, J., Thorp, T.A., Noel, K.D., Carlson, R.W., and Kondorosi, A., 1993, The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development, Mol. Microbiol. 8 (6): 1083–1094.

    Article  PubMed  CAS  Google Scholar 

  • Priefer, U.B., 1989, Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39, J. Bacteriol. 171 (11): 6161–6168.

    PubMed  CAS  Google Scholar 

  • Pugsley, A.P., 1993, The complete general secretory pathway in gram-negative bacteria, Microbiol. Rev. 57 (1): 50–108.

    PubMed  CAS  Google Scholar 

  • Pichler, A., Arnold, W, Buendia-Claveria, A., Kapp, D., Keller, M., Niehaus, K., Quandt, J., Roxlau, A., and Weng, W.M., 1991, The role of the Rhizobium meliloti exopolysaccharide EPS I and EPS II in the infection process of alfalfa nodules, in: Advances in Molecular Genetics of Plant-Microbe Interactions, Volume 1, ( H. Hennecke and D.P.S. Verma, eds.), Kluwer Academic, Dordrecht, pp. 189–194.

    Google Scholar 

  • Putnoky, P., Petrovics, G., Kereszt, A., Grosskopf, E., Ha, D.T.C., Banfalvi, Z., and Kondorosi, A., 1990, Rhizobium meliloti lipopolysaccharide and exopolysaccharide can have the same function in the plant-bacterium interaction, J. Bacteriol. 172 (9): 5450–5458.

    CAS  Google Scholar 

  • Quandt, J., Hillemann, K., Niehaus, W, Arnold, W, and Miler, A., 1992, An osmorevertant of a Rhizobium meliloti ndvB deletion mutant forms infection threads but is defective in bacteroid development, Mol. Plant-Microbe Interact. 5 (5): 420–427.

    Article  CAS  Google Scholar 

  • Relic, B., Perret, X., Estrada-García, M.T., Kopcinska, J., Golinowski, W., Krishnan, H.B., Pueppke, S.G., and Broughton, W.J., 1994, Nod factors are a key to the legume door, Mol. Microbiol. 13 (1): 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Reuber, T.L., and Walker, G.C., 1993a, Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti, Cell 74 (2): 269–280.

    Article  PubMed  CAS  Google Scholar 

  • Reuber,T.L., and Walker, G.C., 1993b, The acetyl substituent of succinoglycan is not necessary for alfalfa nodule invasion by Rhizobium meliloti Rm 1021, J. Bacteriol. 175 (11): 3653–3655.

    Google Scholar 

  • Reuhs, B.L., 1996, Acidic capsular polysaccharides (K antigens) of Rhizobium, in: Biology of Plant-Microbe Interactions, ( G. Stacey, B. Mullin, and P.M. Gresshoff, eds.), International Society for Molecular Plant-Microbe Interactions, St Paul, MN, pp. 349–352.

    Google Scholar 

  • Reuhs, B.L., Carlson, R.W., and Kim, J.S., 1993, Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-D-manno-2-octulosonic-acid containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli, J. Bacteriol. 175 (11): 3570–3580.

    CAS  Google Scholar 

  • Reuhs, B.L., Kim, J.S., Badgett, A., and Carlson, R.W., 1994, Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract, Mol. Plant-Microbe Interact. 7 (2): 240–247.

    Article  PubMed  CAS  Google Scholar 

  • Reuhs, B.L., Williams, M.N.V., Kim, J.S., Carlson, R.W., and Côté, E, 1995, Suppression of the Fix-phenotype of Rhizobium meliloti exoB mutants by 1psZ is correlated to a modified expression of the K polysaccharide, J. Bacteriol. 177 (15): 4289–4296.

    PubMed  CAS  Google Scholar 

  • Rolin, D.B., Pfeffer, P.E., Osman, S.F., Szwergold, B.S., Kappler, E, and Benesi, A.J., 1992, Structural studies of a phosphocholine substituted fl-(1,3)(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA110, Biochim. Biophysic. Acta. 1116(3): 215225.

    Google Scholar 

  • Scheu, A.K., Economou, A., Hong, G.F., Ghelani, S., Johnston, A.W.B., and Downie, J.A., 1992, Secretion of the Rhizobium leguminosarum nodulation protein NodO by haemolysintype systems, Mol. Microbiol. 6 (2): 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Soto, M.J., Lepek, V., Lopez-Lara, I.M., Olivares, J., and Toro, N., 1992, Characterization of a Rhizobium meliloti ndvB mutant and a symbiotic revenant that regains wild-type properties, Mol. Plant-Microbe Interact. 5 (4): 288–293.

    Article  CAS  Google Scholar 

  • Spaink, H.P., Sheeley, D.M., van Brussel, A.A.N., Glushka, J., York, W.S., Tak, T., Geiger, O., Kennedy, E.P., Reinhold, V.N., and Lugtenberg, B.J.J., 1991, A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium, Nature, 354: 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Stacey, G., So, J.-S., Roth, R.E., Lakshmi S.K., B., and Carlson, R.W., 1991, A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation, Mol. Plant-Microbe Interact. 4 (4): 332–340.

    Article  CAS  Google Scholar 

  • Stanfield, S.W., Ielpi, L., O’Brocta, D., Helinski, D.R., and Ditta, G.S., 1988, The ndvA gene product of Rhizobium meliloti is required for (3-(1,2)-glucan production and has homology to the ATP-binding export protein HIyB, J. Bacteriol. 170 (8): 3523–3530.

    PubMed  CAS  Google Scholar 

  • Sutton, J.M., Lea, E.J.A., and Downie, J.A., 1994, The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes, Proc. Natl. Acad. Sci. USA 91 (21): 9990–9994.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, J.M., Peart, J., Dean, G., and Downie, J.A., 1996, Analysis of the C-terminal secretion signal of the Rhizobium leguminosarum nodulation protein NodO; a potential system for the secretion of heterologous proteins during nodule invasion, Mol. Plant-Microbe Interact. 9 (8): 671–680.

    Article  PubMed  CAS  Google Scholar 

  • van Rhijn, P., Luyten, E., Vlassak, K., and Vanderleyden, J., 1996, Isolation and characterization of a pSym locus of Rhizobium sp. BR816 that extends nodulation ability of narrow host range Phaseolus vulgaris symbionts to Leucaena leucocephala, Mol. Plant-Microbe Interact. 9 (1): 74–77.

    Article  PubMed  Google Scholar 

  • Vlassak, K.M., Luyten, E., Verreth, C., van Rhijn, P., Bisseling, T., and Vanderleyden, J., 1998, The Rhizobium sp. BR816 nodO gene can function as a determinant for nodulation of Leucaena leucocephala, Phaseolus vulgaris, and Trifolium repens by a diversity of Rhizobium spp., Mol. Plant-Microbe Interact. 11 (5): 383–392.

    Article  CAS  Google Scholar 

  • Viprey, V, Del Greco, A., Golinowski, W., Broughton, W.J., and Perret, X., 1998, Symbiotic implications of type III secretion machinery in Rhizobium, Mol. Microbiol. 28(6): 13811389.

    Google Scholar 

  • Wandersman, C., 1996, Secretion across the bacterial outer membrane, in: Escherichia coli and Salmonella: cellular and molecular biology, (F.C. Neidhardt, R. Curtis III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, M. Riley, W.S. Reznikoff, M. Schaechter, and H.E. Umbarger, eds.), 2nd ed., ASM Press, Washington, D.C., pp. 955–966.

    Google Scholar 

  • Wengelnik, K., Van den Ackerveken, G., and Bonas, U., 1996, HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators, Mol. Plant-Microbe Interact. 9 (8): 704–712.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield, C., and Valvano, M.A., 1993, Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria, Adv. Microb. Physiol. 35: 135–246.

    Article  PubMed  CAS  Google Scholar 

  • Williams, M.N.V., Hollingsworth, R.I., Klein, S., and Signer, E.R., 1990, The symbiotic defect of Rhizobium meliloti exopolysaccharide mutants is suppressed by 1psZ, a gene involved in lipopolysaccharide biosynthesis, J. Bacteriol. 172 (5): 2622–2632.

    PubMed  CAS  Google Scholar 

  • Willis, D.K., Rich, J.J., and Hraback, E.M., 1991, hrp genes of phytopathogenic bacteria. Mol. Plant-Microbe Interact. 4(2):132–138.

    Google Scholar 

  • Yang, C., Signer, E.R., and Hirsch, A.M., 1992a, Nodules initiated by Rhizobium meliloti exopolysaccharide mutants lack a discrete, persistent nodule meristem, Plant Physiol. 98 (1): 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W-C., Canter Cremers, H.C.J., Hogendijk, P., Katinakis, P., Wijffelman, C.A., Franssen, H., van Kammen, A., and Bisseling, T., 1992b, In-situ localization of chalcone synthase mRNA in pea root nodule development, Plant J. 2 (2): 143–151.

    CAS  Google Scholar 

  • York, G.M., and Walker, G.C., 1997, The Rhizobium meliloti exoK gene and prsD/prsElexsH genes are components of independent degradative pathways which contribute to production of low-molecular-weight succinoglycan, Mol. Microbiol. 25 (1): 117–134.

    Article  PubMed  CAS  Google Scholar 

  • York, G.M., and Walker, G.C., 1998, The Rhizobium meliloti ExoK and ExsH glycanases specifically depolymerize nascent succinoglycan chains, Proc. Natl. Acad. Sci. USA 95 (9): 4912–4917.

    Article  PubMed  CAS  Google Scholar 

  • Zevenhuizen, L.P.T.M., and van Neerven, A.R.W., 1983, (1–2)-ß-D-glucan and acidic oligosaccharides produced by Rhizobium meliloti, Carbohydr. Res. 118: 127–134.

    Google Scholar 

  • Zhan, H., Levery, S.B., Lee, C.C., and Leigh, J.A., 1989, A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion, Proc. Natl. Acad. Sci. USA 86 (9): 3055–3059.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Viprey, V., Perret, X., Broughton, W.J. (2000). Host-Plant Invasion by Rhizobia. In: Oelschlaeger, T.A., Hacker, J. (eds) Bacterial Invasion into Eukaryotic Cells. Subcellular Biochemistry, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4580-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4580-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3330-0

  • Online ISBN: 978-1-4757-4580-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics