Host-Plant Invasion by Rhizobia

  • V. Viprey
  • X. Perret
  • W. J. Broughton
Part of the Subcellular Biochemistry book series (SCBI, volume 33)

Abstract

Colonization of legume roots by compatible soil bacteria of the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium (collectively known as rhizobia) leads to the formation of specialized nitrogen-fixing organs called nodules. Signals produced by both partners control specificity. Flavonoids found in root exudates trigger the expression of the rhizobial genes (nod, nol, noe) required for nodulation (Fellay et al., 1995). Many nod loci are involved in the synthesis and secretion of Nod-factors, a family of complex lipo-chito-oligosaccharides (Hanin et al., 1998b; Dénarié et al., 1996). Nod-factors initiate division of nodule meristems and permit entry of rhizobia into the host-plant (Relic et al., 1994).

Keywords

Capsular Polysaccharide Rhizobium Leguminosarum Nodule Development Infection Thread Indeterminate Nodule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, M., Amemura, A., and Higashi, S., 1982, Studies on cyclic 13-(1,2)-glucan obtained from periplasmic space of Rhizobium trifolii cells, Plant Soil 64: 315–324.CrossRefGoogle Scholar
  2. Alfano, J.R., and Collmer, A., 1997, The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death, J. Bacteriol. 179 (18): 5655–5662.PubMedGoogle Scholar
  3. Allaway, D., Jeyaretnam, B., Carlson, R.W., and Poole, P.S., 1996, Genetic and chemical characterization of a mutant that disrupts synthesis of the lipopolysaccharide core tetrasaccharide in Rhizobium leguminosarum, J. Bacteriol. 178 (21): 6403–6406.PubMedGoogle Scholar
  4. Aman, P., McNeil, M., Franzen, L.-E., Darvill, A.G., and Albersheim, P., 1981, Structural elucidation, using HPLC-MS and GLC-MS, of the acidic exopolysaccharide secreted by Rhizobium meliloti strain Rm1021. Carbohydr. Res. 95: 263–282.CrossRefGoogle Scholar
  5. Battisti, L., Lara, J.C., and Leigh, J.A., 1992, Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa, Proc. Natl. Acad. Sci. USA 89 (12): 5625–5629.PubMedCrossRefGoogle Scholar
  6. Becker, A., Kleickmann, A., Arnold, W, and Ptihler, A., 1993, Analysis of the Rhizobium meliloti exoHlexoKlexoL fragment: ExoK shows homology to excreted endo-13–1,3–1,4 glucanases and ExoH resembles membrane proteins, Mol. Gen. Genet. 238 (1–2): 145–154.PubMedGoogle Scholar
  7. Becker, A., Ruberg, S., Kuster, H., Roxlau, A.A., Keller, M., Ivashina, T., Cheng, H.P., Walker, G.C., and Ptihler, A., 1997, The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded products, J. Bacteriol. 179 (4): 1375–1384.PubMedGoogle Scholar
  8. Becquart-de-Kozak, I., Reuhs, B.L., Buffard, D., Breda, C., Kim, J.S., Esnault, R., and Kondorosi A., 1997, Role of the K-antigen subgroup of capsular polysaccharides in the early recognition process between Rhizobium meliloti and alfalfa leaves, Mol. Plant-Microbe Interact. 10 (1): 114–123.CrossRefGoogle Scholar
  9. Bellato, C.M., Balatti, P.A., Pueppke, S.G., and Krishnan, H.B., 1996, Proteins from cells of Rhizobium fredii bind to DNA sequences preceding nolX, a flavonoid-inducible nod gene that is not associated with a nod box, Mol. Plant-Microbe Interact. 9 (6): 457–463.PubMedCrossRefGoogle Scholar
  10. Bellato, C., Krishnan, H.B., Cubo, T., Temprano, E, and Pueppke, S.G., 1997, The soybean cultivar specificity gene nolX is present, expressed in a nodD-dependent manner, and of symbiotic significance in cultivar-non specific strains of Rhizobium (Sinorhizobium) fredii, Microbiol. 143: 1381–1388.CrossRefGoogle Scholar
  11. Bhagwat, A.A., Gross, K.C.,Tully, R.E., and Keister, D.L.,1996, I-glucan synthesis in Bradyrhizobium japonicum: characterization of a new locus (ndvC) influencing 13-(1,6) linkages, J. Bacteriol. 178(15):4635–4642.Google Scholar
  12. Bhagwat, A.A., ThIly, R.E., and Keister, D.L., 1992, Isolation and characterization of an ndvB locus from Rhizobium fredii, Mol. Microbiol. 6 (15): 2159–2165.PubMedCrossRefGoogle Scholar
  13. Bogdanove,A.J., Beer, S.V., Bonas, U., Boucher, C.A., Collmer, A., Coplin, D.L., Cornelis, G.R., Huang, H.C., Hutcheson, S.W., Panopoulos, N.J., and Van Gijsegem, E, 1996, Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria, Mol. Microbiol. 20 (3): 681–683.CrossRefGoogle Scholar
  14. Borthakur, D., Barbur, C.E., Lamb, J.W., Daniels, M.J., Downie, J.A., and Johnston, A.W.B., 1986, A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not of beans by R. phaseoli and is corrected by cloned DNA from Rhizobium or the phytopathogen Xanthomonas, Mol. Gen. Genet. 203 (2): 320–323.CrossRefGoogle Scholar
  15. Breedveld, M.W., and Miller, K.J., 1994, Cyclic ß-glucans of members of the family Rhizobiaceae, Microbiol. Rev. 58 (2): 145–161.PubMedGoogle Scholar
  16. Breedveld, M.W., Zevenhuizen, L.P.T.M., and Zehnder, A.J.B., 1990, Excessive excretion of cyclic 13-(1,2)-glucans by Rhizobium trifolii TA-1, Appl. Environ. Microbiol. 56(7): 20802086.Google Scholar
  17. Brewin, N.J., 1991, Development of the legume root nodule, Annu. Rev. Cell Biol. 7: 191–226.PubMedCrossRefGoogle Scholar
  18. Brink, B.A., Miller, J., Carlson, R.W., and Noel, K.D., 1990, Expression of Rhizobium leguminosarum CFN42 genes for lipopolysaccharide in strains derived from different R. leguminosarum soil isolates, J. Bacteriol. 172 (2): 548–555.PubMedGoogle Scholar
  19. Carlson, R.W., Bhat, U.R., and Reuhs, B., 1992, Rhizobium lipopolysaccharides: Their structure and evidence for their importance in the nitrogen-fixing symbiotic infection of their host legumes, in: Plant Biotechnology and Development, (P.M. Gresshoff, ed.), CRC Press, Boca Raton, pp. 33–44.Google Scholar
  20. Cava, J.R., Elias, P.M.,Throwski, D.A., and Noel, K.D.,1989, Rhizobium leguminosarum CFN42 genetic regions encoding lipopolysaccharide structures essential for complete nodule development on bean plants, J. Bacteriol. 171(1):8–15.Google Scholar
  21. Cava, J.R., Tao, H., and Noel, K.D., 1990, Mapping of complementation groups within a Rhizobium leguminosarum CFN42 chromosomal region required for lipopolysaccharide synthesis, Mol. Gen. Genet. 221 (1): 125–128.CrossRefGoogle Scholar
  22. Chakravorty, A.K., Zurowski, W., Shine, J., and Rolfe, B.G., 1982, Symbiotic nitrogen fixation: molecular cloning of Rhizobium genes involved in exopolysaccharide synthesis and effective nodulation, J. Mol. Appl. Genet. 1 (6): 585–596.PubMedGoogle Scholar
  23. Chen, H., Batley, M., Redmond, J., and Rolfe, B.G., 1985, Alteration of the effective nodulation properties of a fast-growing broad host range Rhizobium due to changes in exopolysaccharide synthesis, J. Plant Physio1. 120: 331–349.CrossRefGoogle Scholar
  24. Clover, R.H., Kieber, J., and Signer, E.R., 1989, Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis, J. Bacteriol. 171 (7): 3961–3967.PubMedGoogle Scholar
  25. Cohn, J., Day, R.B., and Stacey, G., 1998, Legume nodule organogenesis, Trends Plant Sci. 3 (3): 105–110.CrossRefGoogle Scholar
  26. de Maagd, R.A., Rao, A.S., Mulders, I.H.M., Goosen-de Roo, L., van Loosdrecht, M.C.M., Wijffelman, C.A., and Lugtenberg, B.J.J, 1989a, Isolation and characterization of mutants of Rhizobium leguminosarum by. viciae 248 with altered lipopolysaccharides: Possible role of surface charge or hydrophobicity in bacterial release from the infection thread, J. Bacteriol. 171 (2): 1143–1150.PubMedGoogle Scholar
  27. de Maagd, R.A., Wijfjes, A.H., Spaink, H.P., Ruiz-Sainz, J.E., Wijffelman, C.A., Okker, R.J., and Lugtenberg, B.J., 1989b, nodO,a new nod gene of the Rhizobium leguminosarum biovar viciae sym plasmid pRL1J1, encodes a secreted protein, J. Bacteriol. 171(12):6764–6770.Google Scholar
  28. Demont, N., Debellé, R., Aurelle, H., Dénarié, J., and Promé, J.-C., 1993, Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic. nodulation factors, J. Biot Chem. 268 (27): 20134–20142.Google Scholar
  29. Dénarié, J., Debellé, F., and Rosenberg, C., 1992, Signalling and host range variation in nodulation, Annu. Rev. Microbiol. 46: 497–531.PubMedCrossRefGoogle Scholar
  30. Dénarié, J., Debellé, F., and Promé, J.-C., 1996, Rhizobium lipo-chitooligosaccharide nodulation factors. signaling molecules mediating recognition and morphogenesis, Annu. Rev. Biochem. 65: 503–535.Google Scholar
  31. Diebold, R., and Noel, K.D., 1989, Rhizobium leguminosarum exopolysaccharide mutants: biochemical and genetic analyses and symbiotic behavior on three hosts, J. Bacteriol. 171 (9): 4821–4830.Google Scholar
  32. Djordjevic, S.P., Chen, H., Batley, M., Redmond, J.W., and Rolfe, B.G., 1987, Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides, J. Bacteriol. 169 (1): 53–60.PubMedGoogle Scholar
  33. Downie, J.A., and Surin, B.P., 1990, Either of two nod gene loci can complement the nodulation defect of a nod deletion mutant of Rhizobium leguminosarum by viciae, Mol. Gen. Genet. 222 (1): 81–86.PubMedGoogle Scholar
  34. Dylan, T., Ielpi, L., Stanfield, S., Kashyap, L., Douglas, C., Yanofsky, M., Nester, E., Helinski, D.R., and Ditta, G., 1986, Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA 83 (12): 4403–4407.Google Scholar
  35. Dylan, T., Helinski, D.R, and Ditta, G.S., 1990a, Hypoosmoticadaptation in Rhizobium meliloti requires ß-(1,2)-glucan, J. Bacteriol. 172 (3): 1400–1408.PubMedGoogle Scholar
  36. Dylan, T., Nagpal, P., Helinski, D.R., and Ditta, G.S., 1990b, Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants, J. Bacteriol. 172 (3): 1409–1417.PubMedGoogle Scholar
  37. Economou, A., Hamilton, W.D.O., Johnston, A.W.B., and Downie, J.A., 1990, The Rhizobium nodulation gene nodO encodes a Cat’-binding protein that is exported without N-terminal cleavage and is homologous to haemolysin and related proteins, EMBO J. 9 (2): 349–354.PubMedGoogle Scholar
  38. Economou, A., Davies, A.E., Johnston, A.W.B., and Downie, J.A., 1994, The Rhizobium leguminosarum biovar viciae nodO gene cari enable a nodE mutant of Rhizobium leguminosarum biovar trifolii to nodulate vetch, Microbiol. 140: 2341–2347.CrossRefGoogle Scholar
  39. Ehrhardt, D.W., Atkinson, E.M., and Long, S.R., 1992, Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors, Science 256: 998–1000.PubMedCrossRefGoogle Scholar
  40. Ehrhardt, D.W., Wais, R., and Long, S.R., 1996, Calcium spiking in plant root hairs responding to Rhizobium nodulation signals, Cell 85 (5): 673–681.PubMedCrossRefGoogle Scholar
  41. Fellay, R., Rochepeau, P., Relic, B., and Broughton, W.J., 1995, Signals to and emanating from Rhizobium largely control symbiotic specificity, in: Pathogenesis and Host Specificity in Plant Diseases. Histopathological, Biochemical, Genetic and Molecular Bases, Volume 1 ( U.S. Singh, R.P. Singh, and K. Kohmoto, eds.), Pergamon Elsevier Science Ltd., Oxford, pp. 199–220.Google Scholar
  42. Fellé, H.H., Kondorosi, E., Kondorosi, A., and Schultze, M., 1996, Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochitooligosaccharide signals, Plant J. 10 (2): 295–301.CrossRefGoogle Scholar
  43. Finnie, C., Hartley, N.M., Findlay, K.C., and Downie J.A., 1997, The Rhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification, Mol. Microbiol. 25 (1): 135–146.PubMedCrossRefGoogle Scholar
  44. Finnie, C., Zorreguieta, A., Hartley, N.M., Downie, J.A., 1998, Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif, J. Bacteriol. 180 (7): 1691–1699.PubMedGoogle Scholar
  45. Fischer, R.E, and Long, S.R., 1992, Rhizobium-plant signal exchange, Nature 357: 655–660.Google Scholar
  46. Forsberg, L.S., and Reuhs, B.L., 1997, Structural characterization of the K antigens from Rhizobium fredii USDA257: evidence for a common structural motif, with strain-specific variation, in the capsular polysaccharides of Rhizobium spp., J. Bacteriol. 179(17): 53665371.Google Scholar
  47. Freiberg, C., Fellay, R., Bairoch, A., Broughton, W.J., Rosenthal, A., and Perret, X., 1997, Molecular basis of symbiosis between Rhizobium and legumes, Nature 387: 394–401.PubMedCrossRefGoogle Scholar
  48. Garcia-de los Santos, A., and Brom, S.,1997, Characterization of two plasmid-borne 1ps ß loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants, Mol. Plant-Microbe Interact. 10(7):891–902.Google Scholar
  49. Gehring, C.A., Irving, H.R., Kabbara, A.A., Parish, R.W., Boukli, N.M., and Broughton, W.J., 1997, Rapid, plateau-like increases in intracellular free calcium are associated with Nodfactor-induced root-hair deformation, Mol. Plant-Microbe Interact. 10 (7): 791–802.CrossRefGoogle Scholar
  50. Geiger, O., Weissborn, A.C., Kennedy, E.P., 1991, Biosynthesis and excretion of cyclic glucans by Rhizobium meliloti 1021, J. Bacteriol. 173 (9): 3021–3024.PubMedGoogle Scholar
  51. Glazebrook, J., and Walker, G.C., 1989, A novel exopolysaccharide can function in place of the Calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti, Cell 56 (4): 661–672.PubMedCrossRefGoogle Scholar
  52. Glucksmann, M.A., Reuber, T.L., and Walker, G.C., 1993, Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: A model for succinoglycan biosynthesis, J. Bacteriol. 175 (21): 7045–7055.PubMedGoogle Scholar
  53. Gonzàles, J.E., Reuhs, B.L, and Walker, G.C., 1996, Low molecular weight EPS lI of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc. Natl. Acad. Sci. USA 93 (16): 8636–8641.CrossRefGoogle Scholar
  54. Gray, J.X., Zhan, H., Levery, S.B., Battisti, L., Rolfe, B.G., and Leigh, J.A., 1991, Heterologous exopolysaccharide production in Rhizobium sp. strain NGR234 and consequences for nodule development, J. BacterioL 173 (10): 3066–3077.PubMedGoogle Scholar
  55. Hanin, M., Jabbouri, S., Broughton, W.J., and Fellay, R., 1998a, SyrM1 of Rhizobium sp. NGR234 activates transcription of symbiotic loci and controls the level of sulfated Nod factors, MoL Plant-Microbe Interact. 11 (5): 343–350.CrossRefGoogle Scholar
  56. Hanin, M., Jabbouri, S., Broughton, W.J., Fellay, R., and Quesada-Vincens, D., 19986, Molecular aspects of host-specific nodulation, in: Plant-Microbe Interactions,(G. Stacey and N.T. Keen, eds.), American Phytopathology Society, St Paul, MN, in press.Google Scholar
  57. Her, G.-R., Glazebrook, J., Walker, G.C., and Reinhold, V.N., 1990, Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm1021. Carbohydr. Res. 198: 305–312.PubMedCrossRefGoogle Scholar
  58. Hirsch, A.M., 1992, Developmental biology of legume nodulation, New Phytol. 122: 211–237.CrossRefGoogle Scholar
  59. Hotter, G.S., and Scott, D.B., 1991, Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host, J. Bacteriol. 173 (2): 851–859.PubMedGoogle Scholar
  60. Hueck, C.J., 1998, Type III protein secretion systems in bacterial pathogens of animals and plants, MicrobioL Mol. Biol. Rev. 62 (2): 379–433.PubMedGoogle Scholar
  61. Ielpi, L., Dylan, T., Ditta, G.S., Helinski, D.R., and Stanfield, S.W., 1990, The ndvB locus of Rhizobium meliloti encodes a 319kDa protein involved in the production of (3-(1,2)glucan, J. Biol. Chem. 265 (5): 2843–2851.PubMedGoogle Scholar
  62. Jann, B., and Jann, K., 1990, Structure and biosynthesis of the capsular antigens of Escherichia coli, Curr. Top. Microbiol. ImmunoL 150: 19–42.PubMedCrossRefGoogle Scholar
  63. Kannenberg, E.L., Rathbun, E.A., and Brewin, N.J., 1992, Molecular dissection of structure and function in the lipopolysaccharide of Rhizobium leguminosarum strain 3841 using monoclonal antibodies and genetic analysis, Mol. Microbio. 6 (17): 2477–2487.CrossRefGoogle Scholar
  64. Kijne, J.W., 1992, The Rhizobium infection process, in: Biological Nitrogen Fixation, ( G. Stacey, R.H. Burris, and H.J. Evans, eds.), Chapman and Hall, New York, pp. 349–398.Google Scholar
  65. Kim, C.H., Thlly, R.E., and Keister, D.L., 1989, Exopolysaccharide-deficient mutants of Rhizobium fredii HH303 which are symbiotically effective, Appl. Environ. Microbio!. 55 (7): 1852–1854.Google Scholar
  66. Kiss, E., Reuhs, B.L., Kim, J.S., Kereszt, A., Petrovics, G., Putnoky, P., Dusha, I., Carlson, R.W., and Kondorosi, A., 1997, The rkpGHI and -J genes are involved in capsular polysaccharide production by Rhizobium meliloti, J. Bacterial. 179 (7): 2132–2140.Google Scholar
  67. Krishnan, H.B., Kuo, C.-I., and Pueppke, S.G., 1995, Elaboration of flavonoid-induced proteins by the nitrogen-fixing soybean symbiont Rhizobium fredii is regulated by both nodDI and nodD2, and is dependent on the cultivar-specificity locus, noIXWBTUV, Microbial. 141: 2245–2251.Google Scholar
  68. Lee, C.A., 1997, Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells?, Trends Microbiol. 5 (4): 149–156.CrossRefGoogle Scholar
  69. Leigh, J.A., and Lee, C.C., 1988, Characterization of polysaccharides of Rhizobium meliloti exo mutants that form ineffective nodules, J. Bacteriol. 170 (8): 3327–3332.PubMedGoogle Scholar
  70. Leigh, J.A., and Walker, G.C., 1994, Exopolysaccharides of Rhizobium: Synthesis, regulation and symbiotic function, Trends Genet. 10 (2): 63–67.PubMedCrossRefGoogle Scholar
  71. Leigh, J.A., Signer, E.R., and Walker, G.C., 1985, Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules, Proc. Natl. Acad. Sci. USA 82(18): 62316235.Google Scholar
  72. Leigh, J.A., Reed, J.W., Hanks, J.F., Hirsch, A.M., and Walker, G.C., 1987, Rhizobium meliloti mutants that fail to succinylate their Calcofluor-bonding exopolysaccharide are deficient in nodule invasion, Cell 51 (4): 579–587.Google Scholar
  73. Lindgren, P.B., Peet, R.C., and Panopoulos, N.J., 1986, Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity of non host plants, J. Bacteriol. 168 (2): 512–522.PubMedGoogle Scholar
  74. Meinhardt, L.W., Krishnan, H.B., Balatti, P.A., and Pueppke, S.G., 1993, Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257, Mol. Microbiol. 9 (1): 17–29.PubMedCrossRefGoogle Scholar
  75. Mithófer, A., Bhagwat, A.A., Feger, M., and Ebel, J., 1996, Suppression of fungal ßglucan-induced plant defence in soybean (Glycine max L.) by cyclic 1,3–1,6–13-glucans from the symbiont Bradyrhizobium japonicum, Planta 199 (2): 270–275.CrossRefGoogle Scholar
  76. Mylona, P., Pawlowski, K., and Bisseling, T., 1995, Symbiotic nitrogen fixation, Plant Cell 7 (7): 869–885.PubMedGoogle Scholar
  77. Nagpal, P., Khanuja, S.P.S., and Stanfield, S.W., 1992, Suppression of the ndv mutant of Rhizobium meliloti by cloned exo genes, Mol. Microbial. 6 (4): 479–488.CrossRefGoogle Scholar
  78. Niehaus, K., Kapp, D., and Pühler, A., 1993, Plant defence and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti mutant, Planta 190 (4): 415–425.Google Scholar
  79. Niehaus, K., Baier, R., Becker, A., and Pühler, A., 1996, Symbiotic suppression of the Medicago sativa defense system-the key of Rhizobium meliloti to enter the host plant?, in: Biology of Plant-Microbe Interactions, ( G. Stacey, B. Mullin, and M. Gresshoff, eds.), International Society for Molecular Plant-Microbe Interactions, St Paul, MN, pp. 349–352.Google Scholar
  80. Noel, K.D., VandenBosch, K.A., and Kulpaca, B., 1986, Mutations in Rhizobium phaseoli that lead to arrested development of infection threads, J. Bacteriol. 168 (3): 1392–1401.PubMedGoogle Scholar
  81. Olsen, P., Collins, M., and Rice, W, 1992, Surface antigens present on vegetative Rhizobium meliloti cells may be diminished or absent when the cells are in the bacteroid form, Can. J. Microbiol. 38: 506–509.CrossRefGoogle Scholar
  82. Palacios, R., Boistard, P., DAvila, G., Fonstein., M., Giittfert, M., Perret, X., Ronson, C., and Sobral, B., 1998, Genome structure in nitrogen-fixing organisms, in: Biological Nitrogen Fixation for the 21st Century, ( C. Elmerich, A. Kondorosi, and W.E. Newton, eds.), Kluwer Academic Pub., Dordrecht, pp. 541–547.Google Scholar
  83. Parniske, M., Kosch, K., Werner, D., and Müller, P., 1993, ExoB mutants of Bradyrhizobium japonicum with reduced competitivity on Glycine max, Mol. Plant-Microbe Interact. 6 (1): 99–106.CrossRefGoogle Scholar
  84. Parniske, M., Schmidt, P.E., Kosch, K., and Müller, P., 1994, Plant defense responses of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum, Mol. Plant-Microbe Interact. 7 (5): 631–638.CrossRefGoogle Scholar
  85. Parveen, N., Webb, D.T., and Borthakur, D., 1997, The symbiotic phenotypes of exopolysaccharide-defective mutants of Rhizobium sp. strain TAL1145 do not differ on determinate-and indeterminate-nodulating tree legumes, Microbiol. 143: 1959–1967.CrossRefGoogle Scholar
  86. Perotto, S., Brewin, N.J., and Kannenberg, E.L.,1994, Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharidedefective mutants of Rhizobium leguminosarum strain 3841, Mol. Plant-Microbe Interact. 7(1):99–112.Google Scholar
  87. Petrovics, G., Putnoky, P., Reuhs, B., Kim, J., Thorp, T.A., Noel, K.D., Carlson, R.W., and Kondorosi, A., 1993, The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development, Mol. Microbiol. 8 (6): 1083–1094.PubMedCrossRefGoogle Scholar
  88. Priefer, U.B., 1989, Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39, J. Bacteriol. 171 (11): 6161–6168.PubMedGoogle Scholar
  89. Pugsley, A.P., 1993, The complete general secretory pathway in gram-negative bacteria, Microbiol. Rev. 57 (1): 50–108.PubMedGoogle Scholar
  90. Pichler, A., Arnold, W, Buendia-Claveria, A., Kapp, D., Keller, M., Niehaus, K., Quandt, J., Roxlau, A., and Weng, W.M., 1991, The role of the Rhizobium meliloti exopolysaccharide EPS I and EPS II in the infection process of alfalfa nodules, in: Advances in Molecular Genetics of Plant-Microbe Interactions, Volume 1, ( H. Hennecke and D.P.S. Verma, eds.), Kluwer Academic, Dordrecht, pp. 189–194.Google Scholar
  91. Putnoky, P., Petrovics, G., Kereszt, A., Grosskopf, E., Ha, D.T.C., Banfalvi, Z., and Kondorosi, A., 1990, Rhizobium meliloti lipopolysaccharide and exopolysaccharide can have the same function in the plant-bacterium interaction, J. Bacteriol. 172 (9): 5450–5458.Google Scholar
  92. Quandt, J., Hillemann, K., Niehaus, W, Arnold, W, and Miler, A., 1992, An osmorevertant of a Rhizobium meliloti ndvB deletion mutant forms infection threads but is defective in bacteroid development, Mol. Plant-Microbe Interact. 5 (5): 420–427.CrossRefGoogle Scholar
  93. Relic, B., Perret, X., Estrada-García, M.T., Kopcinska, J., Golinowski, W., Krishnan, H.B., Pueppke, S.G., and Broughton, W.J., 1994, Nod factors are a key to the legume door, Mol. Microbiol. 13 (1): 171–178.PubMedCrossRefGoogle Scholar
  94. Reuber, T.L., and Walker, G.C., 1993a, Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti, Cell 74 (2): 269–280.PubMedCrossRefGoogle Scholar
  95. Reuber,T.L., and Walker, G.C., 1993b, The acetyl substituent of succinoglycan is not necessary for alfalfa nodule invasion by Rhizobium meliloti Rm 1021, J. Bacteriol. 175 (11): 3653–3655.Google Scholar
  96. Reuhs, B.L., 1996, Acidic capsular polysaccharides (K antigens) of Rhizobium, in: Biology of Plant-Microbe Interactions, ( G. Stacey, B. Mullin, and P.M. Gresshoff, eds.), International Society for Molecular Plant-Microbe Interactions, St Paul, MN, pp. 349–352.Google Scholar
  97. Reuhs, B.L., Carlson, R.W., and Kim, J.S., 1993, Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-D-manno-2-octulosonic-acid containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli, J. Bacteriol. 175 (11): 3570–3580.Google Scholar
  98. Reuhs, B.L., Kim, J.S., Badgett, A., and Carlson, R.W., 1994, Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract, Mol. Plant-Microbe Interact. 7 (2): 240–247.PubMedCrossRefGoogle Scholar
  99. Reuhs, B.L., Williams, M.N.V., Kim, J.S., Carlson, R.W., and Côté, E, 1995, Suppression of the Fix-phenotype of Rhizobium meliloti exoB mutants by 1psZ is correlated to a modified expression of the K polysaccharide, J. Bacteriol. 177 (15): 4289–4296.PubMedGoogle Scholar
  100. Rolin, D.B., Pfeffer, P.E., Osman, S.F., Szwergold, B.S., Kappler, E, and Benesi, A.J., 1992, Structural studies of a phosphocholine substituted fl-(1,3)(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA110, Biochim. Biophysic. Acta. 1116(3): 215225.Google Scholar
  101. Scheu, A.K., Economou, A., Hong, G.F., Ghelani, S., Johnston, A.W.B., and Downie, J.A., 1992, Secretion of the Rhizobium leguminosarum nodulation protein NodO by haemolysintype systems, Mol. Microbiol. 6 (2): 231–238.PubMedCrossRefGoogle Scholar
  102. Soto, M.J., Lepek, V., Lopez-Lara, I.M., Olivares, J., and Toro, N., 1992, Characterization of a Rhizobium meliloti ndvB mutant and a symbiotic revenant that regains wild-type properties, Mol. Plant-Microbe Interact. 5 (4): 288–293.CrossRefGoogle Scholar
  103. Spaink, H.P., Sheeley, D.M., van Brussel, A.A.N., Glushka, J., York, W.S., Tak, T., Geiger, O., Kennedy, E.P., Reinhold, V.N., and Lugtenberg, B.J.J., 1991, A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium, Nature, 354: 125–131.PubMedCrossRefGoogle Scholar
  104. Stacey, G., So, J.-S., Roth, R.E., Lakshmi S.K., B., and Carlson, R.W., 1991, A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation, Mol. Plant-Microbe Interact. 4 (4): 332–340.CrossRefGoogle Scholar
  105. Stanfield, S.W., Ielpi, L., O’Brocta, D., Helinski, D.R., and Ditta, G.S., 1988, The ndvA gene product of Rhizobium meliloti is required for (3-(1,2)-glucan production and has homology to the ATP-binding export protein HIyB, J. Bacteriol. 170 (8): 3523–3530.PubMedGoogle Scholar
  106. Sutton, J.M., Lea, E.J.A., and Downie, J.A., 1994, The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes, Proc. Natl. Acad. Sci. USA 91 (21): 9990–9994.PubMedCrossRefGoogle Scholar
  107. Sutton, J.M., Peart, J., Dean, G., and Downie, J.A., 1996, Analysis of the C-terminal secretion signal of the Rhizobium leguminosarum nodulation protein NodO; a potential system for the secretion of heterologous proteins during nodule invasion, Mol. Plant-Microbe Interact. 9 (8): 671–680.PubMedCrossRefGoogle Scholar
  108. van Rhijn, P., Luyten, E., Vlassak, K., and Vanderleyden, J., 1996, Isolation and characterization of a pSym locus of Rhizobium sp. BR816 that extends nodulation ability of narrow host range Phaseolus vulgaris symbionts to Leucaena leucocephala, Mol. Plant-Microbe Interact. 9 (1): 74–77.PubMedCrossRefGoogle Scholar
  109. Vlassak, K.M., Luyten, E., Verreth, C., van Rhijn, P., Bisseling, T., and Vanderleyden, J., 1998, The Rhizobium sp. BR816 nodO gene can function as a determinant for nodulation of Leucaena leucocephala, Phaseolus vulgaris, and Trifolium repens by a diversity of Rhizobium spp., Mol. Plant-Microbe Interact. 11 (5): 383–392.CrossRefGoogle Scholar
  110. Viprey, V, Del Greco, A., Golinowski, W., Broughton, W.J., and Perret, X., 1998, Symbiotic implications of type III secretion machinery in Rhizobium, Mol. Microbiol. 28(6): 13811389.Google Scholar
  111. Wandersman, C., 1996, Secretion across the bacterial outer membrane, in: Escherichia coli and Salmonella: cellular and molecular biology, (F.C. Neidhardt, R. Curtis III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, M. Riley, W.S. Reznikoff, M. Schaechter, and H.E. Umbarger, eds.), 2nd ed., ASM Press, Washington, D.C., pp. 955–966.Google Scholar
  112. Wengelnik, K., Van den Ackerveken, G., and Bonas, U., 1996, HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators, Mol. Plant-Microbe Interact. 9 (8): 704–712.PubMedCrossRefGoogle Scholar
  113. Whitfield, C., and Valvano, M.A., 1993, Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria, Adv. Microb. Physiol. 35: 135–246.PubMedCrossRefGoogle Scholar
  114. Williams, M.N.V., Hollingsworth, R.I., Klein, S., and Signer, E.R., 1990, The symbiotic defect of Rhizobium meliloti exopolysaccharide mutants is suppressed by 1psZ, a gene involved in lipopolysaccharide biosynthesis, J. Bacteriol. 172 (5): 2622–2632.PubMedGoogle Scholar
  115. Willis, D.K., Rich, J.J., and Hraback, E.M., 1991, hrp genes of phytopathogenic bacteria. Mol. Plant-Microbe Interact. 4(2):132–138.Google Scholar
  116. Yang, C., Signer, E.R., and Hirsch, A.M., 1992a, Nodules initiated by Rhizobium meliloti exopolysaccharide mutants lack a discrete, persistent nodule meristem, Plant Physiol. 98 (1): 143–151.PubMedCrossRefGoogle Scholar
  117. Yang, W-C., Canter Cremers, H.C.J., Hogendijk, P., Katinakis, P., Wijffelman, C.A., Franssen, H., van Kammen, A., and Bisseling, T., 1992b, In-situ localization of chalcone synthase mRNA in pea root nodule development, Plant J. 2 (2): 143–151.Google Scholar
  118. York, G.M., and Walker, G.C., 1997, The Rhizobium meliloti exoK gene and prsD/prsElexsH genes are components of independent degradative pathways which contribute to production of low-molecular-weight succinoglycan, Mol. Microbiol. 25 (1): 117–134.PubMedCrossRefGoogle Scholar
  119. York, G.M., and Walker, G.C., 1998, The Rhizobium meliloti ExoK and ExsH glycanases specifically depolymerize nascent succinoglycan chains, Proc. Natl. Acad. Sci. USA 95 (9): 4912–4917.PubMedCrossRefGoogle Scholar
  120. Zevenhuizen, L.P.T.M., and van Neerven, A.R.W., 1983, (1–2)-ß-D-glucan and acidic oligosaccharides produced by Rhizobium meliloti, Carbohydr. Res. 118: 127–134.Google Scholar
  121. Zhan, H., Levery, S.B., Lee, C.C., and Leigh, J.A., 1989, A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion, Proc. Natl. Acad. Sci. USA 86 (9): 3055–3059.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • V. Viprey
    • 1
  • X. Perret
    • 1
  • W. J. Broughton
    • 1
  1. 1.Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS)Université de GenèveChambéry/GenèveSwitzerland

Personalised recommendations