Internalization of Listeria monocytogenes by Nonprofessional and Professional Phagocytes

  • Michael Kuhn
  • Werner Goebel
Part of the Subcellular Biochemistry book series (SCBI, volume 33)


Listeria monocytogenes was originally described by Murray et al. (1926), who named it Bacterium monocytogenes due to the characteristic monocytosis found in the blood of experimentally infected animals. In 1940 it was renamed into its present name. L. monocytogenes is a gram-positive, rod-shaped, non-spore forming, facultative anaerobic bacillus which grows in a wide range of temperatures. L. monocytogenes is catalase positive, oxidase negative, CAMP positive, and expresses a hemolysin producing characteristic zones of lysis on blood agar plates. L. monocytogenes is motile when grown between 20 and 25°C, but the synthesis of flagellin is repressed at 37°C and the bacteria are then nonmotile. The cell wall of L. monocytogenes contains peptidoglycan, teichoic acid, and lipoteichoic acid and shows all the charateristics of a typical gram-positive cell wall. While the teichoic acids are covalently linked to the peptidoglycan, the lipoteichoic acids are anchored to the cytoplasmic membrane via a glycolipid moiety. L. monocytogenes is wide spread in nature and is found on plants, in soil, and in freshwater, but also in silage, wastewater, and in human and animal feces (reviewed in Schuchat et al., 1991).


Listeria Monocytogenes Teichoic Acid Mouse Peritoneal Macrophage Lipoteichoic Acid Complement Receptor Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez-Dominguez, C., Carrasco-Marin, E., and Leyva-Cobian, F., 1993, Role of complement component Clq in phagocytosis of Listeria monocytogenes by murine macrophage-like cell lines, Infect. Immun. 61: 3664–3672.PubMedGoogle Scholar
  2. Alvarez-Dominguez, C., Vazquez-Boland, J.-A., Carrasco-Marin, E., Lopez-Mato, P., and Leyva-Cobian, F, 1997, Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun. 65: 78–88.PubMedGoogle Scholar
  3. Andersson, K., Carballeira, N., Magnusson, K.E., Persson, C., Stendahl, O., Wolf-Watz, H., and Fallman, M., 1996, YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol. Microbiol. 20: 1057–1069.PubMedCrossRefGoogle Scholar
  4. Berche, P, 1995, Bacteremia is required for invasion of the murine central nervous system by Listeria monocytogenes. Microbial Path. 18: 323–336.CrossRefGoogle Scholar
  5. Bohne, J., Kestler, H., Uebele, C., Sokolovic, Z., and Goebel, W, 1996, Differential regulation of the virulence genes of Listeria monocytogenes by the transcriptional activator PrfA. Mol. Microbiol. 20: 1189–1198.CrossRefGoogle Scholar
  6. Bohne, J., Sokolovic, Z., and Goebel, W, 1994, Transcriptional regulation of prfA and PrfA- regulated virulence genes in Listeria monocytogenes. Mol. Microbiol. 11: 1141–1150.CrossRefGoogle Scholar
  7. Braun, L., Dramsi, S., Dehoux, P., Bierne, H., Lindahl, G., and Cossart, P., 1997, InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol. Microbiol. 25: 285–294.PubMedCrossRefGoogle Scholar
  8. Braun, L., Ohayon, H., and Cossart, P., 1998, The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol. Microbiol. 27: 1077–1087.PubMedCrossRefGoogle Scholar
  9. Brehm, K., Kreft, J., Ripio, M.T., and Vazquez-Boland, J.-A., 1996, Regulation of virulence gene expression in pathogenic Listeria. Microbiologia Sem. 12: 219–236.Google Scholar
  10. Bubert, A., Kuhn, M., Goebel, W., and Köhler, S., 1992, Structural and functional properties of the p60 proteins from different Listeria species. J. Bacteriol. 174: 8166–8171.PubMedGoogle Scholar
  11. Bubert, A., Chun, S.-K., Papatheodorou, L., Simm, A., Goebel, W, and Sokolovic, Z., Differential virulence gene expression by Listeria monocytogenes growing within host cells. Mol. Gen. Genet. (submitted for publication).Google Scholar
  12. Cepek, K.L., Shaw, S.K., Parker, C.M., Russel, G.J., Morrow, J.S., Rimm, D.L., and Brenner, M.B., 1994, Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the aEb, integrin. Nature 372: 190–193.PubMedCrossRefGoogle Scholar
  13. Cossart, P, and Lecuit, M., 1998, Interaction of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17: 3797–3806.PubMedCrossRefGoogle Scholar
  14. Cossart, P., Vicente, M.F., Mengaud, J., Baquero, E, Perez-Diaz, J.C., and Berche, P., 1989, Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57: 3629–3636.PubMedGoogle Scholar
  15. Croize, J., Arvieux, J., Berche, P, and Colomb, M.G., 1993, Activation of the human complement alternative pathway by Listeria monocytogenes: evidence for direct binding and proteolysis of the C3 component on bacteria. Infect. Immun. 61: 5134–5139.PubMedGoogle Scholar
  16. Davies, WA., 1983, Kinetics of killing of Listeria monocytogenes by macrophages: rapid killing accompanying phagocytosis. J. Reticuloendothel. Soc. 34: 131–141.PubMedGoogle Scholar
  17. De Chastellier, C., and Berche, P., 1994, Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect. Immun. 62: 543–553.PubMedGoogle Scholar
  18. Demuth, A., Goebel, W., Beuscher, H.U., and Kuhn, M., 1996, Differential regulation of cytokine and cytokine receptor mRNA expression upon infection of bone marrow-derived macrophages with Listeria monocytogenes. Infect. Immun. 64: 3475–3483.Google Scholar
  19. Domann, E., Wehland, J., Rohde, M., Pistor, S., Hartl, M., Goebel, W, Leimeister-Wächter, M., Wuenscher, M., and Chakraborty, T., 1992, A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11: 1981–1990.PubMedGoogle Scholar
  20. Domann, E., Zechel, S., Lingnau, A., Hain, T., Darji, A., Nichterlein, T., Wehland, J., and Chakraborty, T., 1997, Identification and characterization of a novel PrfA-regulated gene in Listeria monocytogenes whose product, IrpA, is highly homologous to internalin proteins, which contain leucin-rich repeats. Infect. Immun. 65: 101–109.PubMedGoogle Scholar
  21. Dramsi, S., Kocks, C., Forestier, C., and Cossart, P., 1993a, Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA. Mot Microbiol. 9: 931–941.CrossRefGoogle Scholar
  22. Dramsi, S., Dehoux, P., and Cossart, P., 1993b, Common features of gram-positive bacterial proteins involved in cell recognition. Mot Microbiol. 9: 1119–1122.CrossRefGoogle Scholar
  23. Dramsi, S., Biswas, I., Maguin, E., Braun, L., Mastroeni, P., Cossart, P., 1995, Entry of Listeria monocytogenes into hepatocytes requires expression of InIB, a surface protein of the internalin multigen family. Mol. MicrobioL 16: 251–261.PubMedCrossRefGoogle Scholar
  24. Dramsi, S., Dehoux, P., Lebrun, M., Goossens, P.L., and Cossart, P., 1997, Identification of four new members of the intemalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65: 1615–1625.Google Scholar
  25. Drevets, D.A., and Campbell, PA., 1991, Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse peritoneal macrophages. Infect. Immun. 59: 2645–2652.PubMedGoogle Scholar
  26. Drevets, D.A., Canono, B.P., and Campbell, P.A., 1992, Listericidal and nonlistericidal mouse macrophages differ in complement receptor type 3-mediated phagocytosis of L. monocytogenes and in preventing escape of the bacteria into the cytoplasm. J. Leukoc. Biol. 52: 70–79.PubMedGoogle Scholar
  27. Drevets, D.A., Leenen, P.J.M., and Campbell, P.A., 1993, Complement receptor type 3 (CD11b/CD18) involvement is essential for killing of Listeria monocytogenes by mouse macrophages. J. Immunol. 151: 5431–5439.PubMedGoogle Scholar
  28. Drevets, D.A., Sawyer, R.T., Potter, T.A., and Campbell, P.A., 1995, Listeria monocytogenes infects human endothelial cells by two distinct mechanisms Infect. Immun. 63: 4268–4276.Google Scholar
  29. Drevets, D.A., Leenen, P.J., and Campbell, P.A., 1996, Complement receptor type 3 mediates phagocytosis and killing of Listeria monocytogenes by a TNF-a-and IFN-’f-stimulated macrophage precursor hybrid. Cell ImmunoL 169: 1–6.PubMedCrossRefGoogle Scholar
  30. Dunne, D.W., Resnick, D., Greenberg, J., Krieger, M., and Joiner, K.A., 1994, The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc. Natl. Acad. Sci. USA 91: 1863–1867.PubMedCrossRefGoogle Scholar
  31. Engelbrecht, F, Chun, S.-K., Ochs, C., Hess, J., Lottspeich, F, Goebel, W, and Sokolovic, Z., 1996, A new PrfA-regulated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of intemalins. Mot MicrobioL 21: 823–837.CrossRefGoogle Scholar
  32. Engelbrecht, E, Dickneite, C., Lampidis, R., Götz, M., DasGupta, U., and Goebel, W, 1998a, Sequence comparison of the chromosomal regions encompassing the internalin C genes (inlC) of Listeria monocytogenes and L. ivanovii. Mol. Gen. Genet. 257: 186–197.PubMedCrossRefGoogle Scholar
  33. Engelbrecht, F., Dominguez-Bernal, G., Dickneite, C., Hess, J., Greiffenberg, L., Lampidis, R., Raffelsbauer, D., Kaufmann, S.H.E., Kreft, J., Vazquez-Boland, J.-A., and Goebel, W., 1998b, A novel PrfA-regulated chromosomal locus of Listeria ivanovii encoding two small, secreted internalins is essential for virulence in mice. Mol. Microbiol. in press.Google Scholar
  34. Farber, J.M., and Peterkin, P.I., 1991, Listeria monocytogenes, a food-borne pathogen. MicrobioL Rev. 55:476–511.Google Scholar
  35. Finlay, B.B., and Falkow, S., 1997. Common themes in microbial pathogenicity revisited. MicrobioL. Mol. Biol. Rev. 61: 136–169.Google Scholar
  36. Gaillard, J.L., and Finlay, B.B., 1996, Effect of cell polarization and differentiation on entry of Listeria monocytogenes into the enterocyte-like Caco-2 cell line. Infect. Immun. 64: 1299–1308.PubMedGoogle Scholar
  37. Gaillard, J.L., Berche, P., Mounier, J., Richard, S., and Sansonetti, P.J., 1987, In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocytelike cell line Caco-2. Infect. Immun. 55: 2822–2829.Google Scholar
  38. Gaillard, J.L., Berche, P., Frehel, C., Gouin, E., and Cossart, P., 1991, Entry of Listeria monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65: 1127–1141.Google Scholar
  39. Gaillard, J.L., Jaubert, F., and Berche, P., 1996, The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo. J. Exp. Med. 183: 359–369.PubMedCrossRefGoogle Scholar
  40. Greenberg, J.W., Fischer, W., and Joiner, K.A., 1996, Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect. Immun. 64: 3318–3325.PubMedGoogle Scholar
  41. Gregory, S.H., Sagnimeni, A.J., and Wing, E.J., 1996, Expression of the inlAB operon by Listeria monocytogenes is not required for entry into hepatic cells in vivo. Infect. Immun. 64: 3983–3986.PubMedGoogle Scholar
  42. Greiffenberg, L., Sokolovic, Z., Schnittler, H.-J., Spory, A., Böckmann, R., Goebel, W., and Kuhn, M., 1997, Listeria monocytogenes-infected human umbilical vein endothelial cells: internalin-independent invasion, intracellular growth, movement, and host cell responses. FEMS Microbiol. Lett. 157: 163–170.Google Scholar
  43. Greiffenberg, L., Goebel, W., Kim, K.S., Weiglein, I., Bubert, A., Engelbrecht, F., Stins, M., and Kuhn, M., Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InIB-dependent invasion, long-term intracellular growth and spread from macrophages to endothelial cells. Infect. Immun. (in revision).Google Scholar
  44. Guzman, C., Rhode, M., Chakraborty, T., Domann, E., Hudel, M., Wehland, J., and Timmis, K., 1995, Interaction of Listeria monocytogenes with mouse dendritic cells. Infect. Immun. 63: 3665–3673.PubMedGoogle Scholar
  45. Hartwig, J.H., Bokoch, G.M., Carpenter, C.L., Janmey, P.A., Taylor, L.A.,Toker,A., and Stossel, T.P.,1995,Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82: 643–653.Google Scholar
  46. Hauf, N., Goebel, W, Fiedler, F, Sokolovic, Z., and Kuhn, M., 1997, Listeria monocytogenes infection of P388D1 macrophages results in a biphasic NF-x13 (RelA/p50) activation induced by lipoteichoic acid and bacterial phospholipases and mediated by IxBa and IiB I degradation. Proc. Natl. Acad. Sci. USA 94: 9394–9399.Google Scholar
  47. Hess, J., Gentschev, I., Szalay, G., Ladel, C., Bubert, A., Goebel, W., and Kaufmann, S.H.E., 1995, Listeria monocytogenes p60 supports host cell invasion by and in vivo survival of attenuated Salmonella typhimurium. Infect. Immun. 63: 2047–2053.Google Scholar
  48. Ireton, K., Payrastre, B., Chap, H., Ogawa, W., Sakaue, H., Kasuga, M., and Cossart, P., 1996, A role for phosphoinositide 3-kinase in bacterial invasion. Science 274: 780–782.PubMedCrossRefGoogle Scholar
  49. Jonquieres, R., Bierne, H., Mengaud, J., and Cossart, P., 1998, The inlA gene of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin. Infect. Immun. 66: 3420–3422.PubMedGoogle Scholar
  50. Karunasagar, I., Senghaas, B., Krohne, G., and Goebel, W., 1994, Ultrastructural study of Listeria monocytogenes entry into cultured human colonic epithelial cells. Infect. Immun. 62: 3554–3558.PubMedGoogle Scholar
  51. Kobe, B., and Deisenhofer, J., 1995, Proteins with leucine-rich repeats. Curt: Opin. Struct. Biol. 5: 409–416.CrossRefGoogle Scholar
  52. Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H., and Cossart, P., 1992, Listeria monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68: 521–531.Google Scholar
  53. Köhler, S., Leimeister-Wächter, M., Chakraborty, T., Lottspeich, F, and Goebel, W, 1990, The gene coding for protein p60 of Listeria monocytogenes and its use as a species specific probe for Listeria monocytogenes. Infect. Immun. 58: 1943–1950.Google Scholar
  54. Köhler, S., Bubert, A., Vogel, M., and Goebel, W, 1991, Expression of the iap gene coding for protein p60 in Listeria monocytogenes is controlled on the posttranscriptional level. J. Bacteriol. 173: 4668–4674.PubMedGoogle Scholar
  55. Kreft, J., Bohne, J., Gross, R., Kestler, H., Sokolovic, Z., and Goebel, W., 1995, Control of Listeria monocytogenes virulence by the transcriptional regulator PrfA. In: Signal Transduction and Bacterial Virulenc (R. Rappuoli, V. Scarlato, and B. Arico. R.G., eds.), Landes Company, Austin, Tex. pp. 129–142.Google Scholar
  56. Kugler, S., Schuller, S., and Goebel,W., 1997, Involvement of MAP-kinases and -phosphatases in uptake and intracellular replication of Listeria monocytogenes in J774 macrophage cells. FEMS Microbiol. Lett. 157: 131–136.PubMedCrossRefGoogle Scholar
  57. Kuhn, M., 1998, The microtubule depolymerizing drugs nocodazole and colchicine inhibit the uptake of Listeria monocytogenes by P388D, macrophages. FEMS Microbiol. Lett. 60: 87–90.CrossRefGoogle Scholar
  58. Kuhn, M., and Goebel, W, 1989, Identification of an extracellular protein of Listeria monocytogenes possibly involved in the intracellular uptake by mammalian cells. Infect. Immun. 57: 55–61.PubMedGoogle Scholar
  59. Kuhn, M., and Goebel, W., 1995, Molecular studies on the virulence of Listeria monocytogenes. Genet. Eng. 17: 31–51.Google Scholar
  60. Kuhn, M., and Goebel, W., 1998, Pathogenesis of Listeria monocytogenes. In: Listeria, Liste- riosis and Food Safet (E.T. Ryser and E.H. Marth. M., eds. ), Dekker Inc. pp. 97–130.Google Scholar
  61. Kuhn, M., Kathariou, S., and Goebel, W, 1988, Hemolysin supports survival but not entry of the intracellular bacterium Listeria monocytogenes. Infect. Immun. 56: 79–82.Google Scholar
  62. Kuhn, M., Engeibrecht, F., Sokolovic, Z., Kugler, S., Schuller, S., Bubert, A., Karunasagar, I., Böckmann, R., Hauf, N., Demuth, A., Kreft, J., and Goebel, W, 1997, Interaction of intracellular bacteria with mammalian host cells and host cell responses. Nova Acta Leopoldina NF 75, 301: 207–221.Google Scholar
  63. Kulich, S.M., Yahr, T.L., Mende-Mueller, L.M., Barbieri, J.T., and Frank, D.W., 1994, Cloning the structural gene for the 49 kDa form of exoenzyme S (exoS) from Pseudomonas aeruginosa strain 388. J. Biol. Chem. 269: 10431–10437.PubMedGoogle Scholar
  64. Lebrun, M., Mengaud, J., Ohayon, H., Nato, E, and Cossart, P., 1996, Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells. Mol. Microbiol. 21: 579–592.PubMedCrossRefGoogle Scholar
  65. Lecuit, M., Ohayon, H., Braun, L., Mengaud, J., and Cossart, P., 1997, Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun. 65:5309–5319.Google Scholar
  66. Lingnau, A., Domann, E., Hudel, M., Bock, M., Nichterlein, T., Wehland, J., and Chakraborty, T., 1995, Expression of the Listeria monocytogenes EGD inIA and in1B genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. Infect. Immun. 63: 3896–3903.Google Scholar
  67. Maganti, S., Pierce, M.M., Hoffmaster, A., Rodgers, EG.,1998,The role of sialic acid in opsonindependent and opsonin-independent adhesion of Listeria monocytogenes to murine peritoneal macrophages. Infect. Immun. 66: 620–6626.Google Scholar
  68. Mecsas, J., Raupach, B., and Falkow, S., 1998, The Yersinia Yops inhibit invasion of Listeria, Shigella and Edwardsiella but not Salmonella into epithelial cells. Mol. Microbiol. 28: 1269–1281.PubMedCrossRefGoogle Scholar
  69. Menard, R., Dehio, C., and Sansonetti, P.J., 1996. Bacterial entry into epithelial cells: the paradigm of Shigella. Trends Microbiol. 4: 220–226.CrossRefGoogle Scholar
  70. Mengaud, J., Lecuit, M., Lebrun, M., Nato, F., Mazie, J.-C., and Cossart, P., 1996a, Antibodies to the leucin-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. Infect. Immun. 64: 5430–5433.PubMedGoogle Scholar
  71. Mengaud, J., Ohayon, H., Gounon, P., Mege, R.-M., and Cossart, P., 1996b, E-cadherin is the receptor for internalin, a surface protein required for entry of Listeria monocytogenes into epithelial cells. Cell 84: 923–932.PubMedCrossRefGoogle Scholar
  72. Mounier, J., Ryter, A., Coquis-Rondon, M., and Sansonetti, P.J., 1990, Intracellular and cell-tocell spread of Listeria monocytogenes involves interaction with F-actin in the enterocyte like cell line Caco-2. Infect. Immun. 58: 1048–1058.Google Scholar
  73. Müller, S., Hain, T., Pashalidis, P., Lingnau, A., Domann, E., Chakraborty, T., Wehland, J., 1998, Purification of the inlB gene product of Listeria monocytogenes and demonstration of its biological activity. Infect. Immun. 66: 3128–3133.PubMedGoogle Scholar
  74. Murray, E.G.D., Webb, R.A., and Swann, M.B.R., 1926, A disease of rabbits characterized by large mononuclear leucocytosis, caused by a hitherto indescribed bacillus, Bacterium monocytogenes (n. sp.). J. Pathol. Bacteriol. 29: 407–439.CrossRefGoogle Scholar
  75. Panda, S.K., Domann, E., Rohde, M., Müller, S., Darji, A., Hain, T., Wehland, J., and Chakraborty, T., 1998, Internalin B is essential for adhesion and mediates the invasion of Listeria monocytogenes into human endothelial cells. Mol. MicrobioL. 28: 81–93.Google Scholar
  76. Pierce, M.M., Gibson, R.E., and Rodgers, F.G., 1996, Opsonin-independent adherence and phagocytosis of Listeria monocytogenes by murine peritoneal macrophages. J. Med. Microbiol. 45: 258–262.PubMedCrossRefGoogle Scholar
  77. Portnoy, D.A., Jacks, P.S., and Hinrichs, D.J., 1988, Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med. 167: 1459–1471.CrossRefGoogle Scholar
  78. Pron, B., Boumaila, C., Jaubert, F, Sarnacki, S., Monnet, J.P., Berche, P., and Gaillard, J.L., 1998, Comprehensive study of the intestinal stage of listeriosis in a rat ligated ilea! loop system. Infect. Immun. 66: 747–755.PubMedGoogle Scholar
  79. Raffelsbauer, D., Bubert, A., Engelbrecht, E, Scheinpflug, J., Simm, A., Hess, J., Kaufmann, S.H.E., and Goebel., W, 1998, The gene cluster inlC2DE of Listeria monocytogenes contains additional new internalin genes and is important for virulence in mice. Mol. Gen. Genet. (in press).Google Scholar
  80. Raybourne, R.B., and Bunning, V.K., 1994, Bacterium-host cell interaction on the cellular level: fluorescent labeling of the bacteria and analysis of short-term bacterium-phagocyte interaction by flow cytometry. Infect. Immun. 62: 665–672.PubMedGoogle Scholar
  81. Rosqvist, R., Forsberg, A., and Wolf-Watz, H., 1991, Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect. Immun. 59: 4562–4569.PubMedGoogle Scholar
  82. Ruhland, G.J., Hellwig, M., Wanner, G., and Fiedler, F., 1993, Cell-surface location of Listeriaspecific protein p60—detection of Listeria cells by indirect immunofluorescence. J. Gen.’ Microbiol. 139: 609–616.PubMedGoogle Scholar
  83. Sawyer, R.T., Drevets, D.A., Campbell, P.A., and Potter, T.A., 1996, Internalin A can mediate phagocytosis of Listeria monocytogenes by mouse macrophage cell lines. J. Leukoc. Biol. 60: 603–610.PubMedGoogle Scholar
  84. Schuchat, A., Swaminathan, B., and Broome, C.V., 1991, Epidemiology of human listeriosis. Clin Microbiol. Rev. 4: 169–183.PubMedGoogle Scholar
  85. Sheehan, B., Kocks, C., Dramsi, S., Gouin, E., Klarsfeld, A.D., Mengaud, J., and Cossart, P., 1994, Molecular and genetic determinants of the Listeria monocytogenes infectious process. Curt: Top. MicrobioL. Immunol. 192: 187–216.CrossRefGoogle Scholar
  86. Sokolovic, Z., Riedel, J., Wuenscher, M., and Goebel, W., 1993, Surface associated, PrfAregulated proteins of Listeria monocytogenes synthesized under stress conditiones. Mol. Microbiol. 8: 219–227.PubMedCrossRefGoogle Scholar
  87. Tang, R, Rosenshine, I., and Finlay, B.B., 1994, Listeria monocytogenes, an invasive bacterium, stimulates MAP kinase upon attachment to epithelial cells. Mol. Biot Cell 5: 455–464.Google Scholar
  88. Tang, P., Rosenshine, I., Cossart, P., and Finlay, B.B., 1996, Listeriolysin O activates mitogenactivated protein kinase in eukaryotic cells. Infect. Immun. 64: 2359–2361.PubMedGoogle Scholar
  89. Tang, R, Sutherland, C.L., Gold, M.R., and Finlay, B.B., 1998, Listeria monocytogenes invasion of epithelial cells requires the MEK-1/ERK-2 mitogen-activated protein kinase pathway. Infect. Immun. 66: 1106–1112.Google Scholar
  90. Temm-Grove, C.T., Jokusch, B., Rohde, M., Niebuhr, K., Chakraborty, T., and Wehland, J., 1994, Exploitation of microfilament proteins by Listeria monocytogenes: microvillus-like composition of the comet tails and vectorial spreading in polarized epithelial sheets. J. Cell Sci. 107: 2951–2960.PubMedGoogle Scholar
  91. Tilney, L.G., and Portnoy, D.A., 1989, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109: 1597–1608.CrossRefGoogle Scholar
  92. Van Langendonck, N., Velge, R, and Bottreau, E., 1998, Host cell protein tyrosine kinases are activated during the entry of Listeria monocytogenes. Possible role of pp6OE“ family protein kinases. FEMS Microbiol. Lett. 162: 169–176.PubMedCrossRefGoogle Scholar
  93. Velge, R, Bottreau, E., Kaeffer, B., and Pardon, R, 1994a, Cell immortalization enhances Listeria monocytogenes invasion. Med. Microbiol. Immun!. 183: 145–158.Google Scholar
  94. Velge, P., Bottreau, E., Kaeffer, B., Yurdusev, N., Pardon, R, and Van Langendonck, N., 1994b, Protein tyrosine kinase inhibitors block the entries of Listeria monocytogenes and Liste-ria ivanovii into epithelial cells. Mircobial Path. 17:37–50.Google Scholar
  95. Weiglein, I., Goebel, W, Troppmair, J., Rapp, U.R., Demuth, A., and Kuhn, M., 1997, Listeria monocytogenes infection of HeLa cells results in LLO mediated transient activation of the Raf-MEK-MAP kinase pathway. FEMS Microbiol. Lett. 148: 189–195.Google Scholar
  96. Wells, C.L., van de Westerlo, E.M.,Jechorek, R.P., Haines, H.M., Erlandsen, S.L., 1998, Cytochalasin-induced actin disruption of polarized enterocytes can augment internalization of bacteria. Infect. Immun. 66: 2410–2419.Google Scholar
  97. Wuenscher, M.D., Köhler, S., Bubert, A., Gerike, U., and Goebel, W, 1993, The iap gene of Listeria monocytogenes is essential for cell viability and its gene product, p60, has bacteriolytic activity. J. Bacteriol. 175: 3491–3501.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Michael Kuhn
    • 1
  • Werner Goebel
    • 1
  1. 1.Lehrstuhl für MikrobiologieUniversität WürzburgWürzburgGermany

Personalised recommendations