Appendices

  • Jan A. Sanders
  • Ferdinand Verhulst
Part of the Applied Mathematical Sciences book series (AMS, volume 59)

Abstract

Perturbation methods for differential equations became important when scientists in the 18th century were trying to relate Newton’s theory of gravitation to the observations of the motion of planets and satellites. Right from the beginning it became clear that a dynamical theory of the solar system based on a superposition of only two-body motions, one body being always the sun and the other body being formed by the respective planets, produces a reasonable but not very accurate fit to the observations. To explain the deviations one considered effects as the influence of satellites like the moon in the case of the earth, the interaction of large planets like Jupiter and Saturn, the resistance of the ether and other effects. These considerations led to the formulation of perturbed two-body motion and, as exact solutions were clearly not available, the development of perturbation theory.

Keywords

Cotangent Bundle Celestial Mechanic Secular Equation High Order Approximation Kepler Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bog61a.
    Bogoliubov, N.N. and Mitropolskii, Yu. A., Asymptotic methods in the theory of nonlinear oscillations, Gordon and Breach, New York (1961).Google Scholar
  2. Bor27a.
    Born, M., The mechanics of the atom, G.Bell and Sons, London (1927).Google Scholar
  3. Cla54a.
    Clairaut, A., “Mémoire sur l’orbite apparent du soleil autour de la Terre, an ayant égard aux perturbations produites par les actions de la Lune et des Planetes principales,” Mém. de l’Acad. des Sci. (Paris), pp. 521–564 (1754).Google Scholar
  4. Fat28a.
    Fatou, P., “Sur le mouvement d’un système soumis â des forces â courte période,” Bull. Soc. Math. 56, pp. 98–139 (1928).Google Scholar
  5. Jac69a.
    Jacobi, C.G.J., “Vorlesungen über Dynamik,” in Collected Works, ed. A. Clebsch, Chelsea Publ. Co., New York (1969).Google Scholar
  6. Kry37a.
    Krylov, N.M. and Bogoliubov, N.N., Introduction to nonlinear mechanics (in Russian), Patent No. 1, Kiev, 1937.Google Scholar
  7. Lag88a.
    Lagrange, J.-L., Mécanique Analytique (2 vols.), edition Albert Blanchard, Paris (1788).Google Scholar
  8. Lap25a.
    de Laplace, S.P., Traité de Mécanique Céleste, Bachelier, Paris (1799–1825).Google Scholar
  9. Man34a.
    Mandelstam, L.I. and Papalexi, N.D., “über die Begründung einer Methode für die Näherungslösung von Differentialgleichungen,” J. f exp. und theor. Physik 4, p. 117 (1934).Google Scholar
  10. Poi92a.
    Poincaré, H., Les Méthodes Nouvelles de la Mécanique Céleste I, Gauthiers-Villars, Paris (1892).Google Scholar
  11. Po126a.
    van der Pol, B., “On Relaxation-Oscillations,” The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 2, pp. 978–992 (1926).MATHGoogle Scholar
  12. Pol20a.
    van der Pol, B, “A theory of the amplitude of free and forced triode vibrations,” The Radio Review, London 1, pp. 701–710 (1920).Google Scholar
  13. Ros66a.
    Roseau, M., Vibrations nonlinéaires et théorie de la stabilité, Springer-Verlag (1966).Google Scholar
  14. Wil80a.
    Wilson, C.A. Wilson, C.A., “Perturbations and solar tables from Lacaille to Delambre: the rapprochement of observation and theory,” Archive for History of Exact Sciences 22, pp. 53–188 (part I) and 189–304 (part II) (1980).Google Scholar
  15. Bur74a.
    van der Burgh, A.H.P., Studies in the Asymptotic Theory of Nonlinear Resonance, Technical Univ., Delft (1974).Google Scholar
  16. Coc62a.
    Cochran, J.A., Problems in singular perturbation theory, Stanford University (1962).Google Scholar
  17. Kev61a.
    Kevorkian, J., The uniformly valid asymptotic representation of the solution of certain nonlinear differential equations, Calif. Inst. Techn., Pasadena (1961).Google Scholar
  18. Kry35a.
    Kryloff, N. and Bogoliùbov, N., “Méthodes approchées de la mécanique non linéaire dans leur application à l’étude de la perturbation des mouvements périodiques et de divers phénomènes de résonance s’y rapportant,” Académie des Sciences d’Ukraine 14 (1935).Google Scholar
  19. Kuz59a.
    Kuzmak, G.E., “Asymptotic solutions of nonlinear second order differential equations with variable coefficients,” J. Appl. Math. Mechanics (PMM) 10, pp. 730–744 (1959).Google Scholar
  20. Mah62a.
    Mahony, J.J., “An expansion method for singular perturbation problems,” J. Australian Math. Soc. 2, pp. 440–463 (1962).Google Scholar
  21. Mor66a.
    Morrison, J.A., “Comparison of the modified method of averaging and the two variable expansion procedure,” SIAM Rev. 8, pp. 6685 (1966).Google Scholar
  22. Nay73a.
    Nayfeh, A.H., Perturbation Methods, Wiley-Interscience, New York (1973).Google Scholar
  23. Per69a.
    Perko, L.M., “Higher order averaging and related methods for perturbed periodic and quasi-periodic systems,” SIAM J. Appl. Math. 17, pp. 698–724 (1969).Google Scholar
  24. Byr71a.
    Byrd, P.F. and Friedman, M.B., Handbook of Elliptic Integrals for Engineers and Scientists, Springer Verlag (1971).Google Scholar
  25. Hir77a.
    Hirsch, M.W., Pugh, C.C., and Shub, M, Pugh, C.C., and Shub, M., “Invariant Manifolds,” Springer Lecture Notes in Mathematics, Berlin 583, Springer-Verlag (1977).Google Scholar
  26. Ho180a.
    Holmes, P.J., “Averaging and chaotic motions in forced oscillations,” SIAM J.Appl.Math. 38, pp. 65–80 (1980).Google Scholar
  27. Me163a.
    Melnikov, V.K., “On the stability of the center for time periodic perturbations,” Trans. Moscow Math. Soc. 12 (1), pp. 1–57 (1963).Google Scholar
  28. San82a.
    Sanders, J.A., “Melnikov’s method and averaging,” Celestial Mechanics 28, pp. 171–181 (1982).MathSciNetMATHCrossRefGoogle Scholar
  29. Aa,83a.
    van der Aa, E., “First order resonances in three-degrees-of-freedom systems,” Celestial Mechanics 31, pp. 163–191 (1983).MathSciNetMATHCrossRefGoogle Scholar
  30. Be170a.
    Bellman, R., Methods of Nonlinear Analysis, I, Academic Press, New York (1970).Google Scholar
  31. Cho77a.
    Cho77a. Chow,S.-N. and Mallet-Paret,J., “Integral averaging and bifurcation,” Journal of Differential Equations 26, pp. 112–159 (1977).MathSciNetMATHCrossRefGoogle Scholar
  32. Set77a.
    Sethna, P.R. and Schapiro, S.M., “Nonlinear behaviour of flutter unstable dynamical systems with gyroscopic and circulatory forces,” J. Applied Mechanics 44, pp. 755–762 (1977).MATHCrossRefGoogle Scholar
  33. Ale81a.
    Alekseev, V.M., “Quasirandom oscillations and qualitative questions in celestial mechanics,” Amer. Math. Soc. Transi. 116 (2), pp. 97–169 (1981).Google Scholar
  34. Brj70a.
    Brjuno, A.D., “Instability in a Hamiltonian system and the distribution of asteroids,” Mat.Sbornik 83, pp. 271–312 (1970).MathSciNetCrossRefGoogle Scholar
  35. Dep81a.
    a. Deprit,A., “The elimination of the parallax in satellite theory,” Celestial Mechanics 24, pp. 111–153 (1981).MathSciNetMATHCrossRefGoogle Scholar
  36. Eck66a.
    Eckstein, M., Shi, Y.Y., and Kevorkian, J., “Satellite motion for arbitrary eccentricity and inclination around the smaller primary in the restricted three-body problem,” The Astronomical Journal 71, pp. 248–263 (1966).CrossRefGoogle Scholar
  37. Gey71a.
    Geyling, F.T. and Westerman, H.R., Introduction to Orbital Mechanics, Addison-Wesley Publ. Co., Reading, Mass. (1971).Google Scholar
  38. Hag76a.
    Hagihara, Y., Celestial Mechanics,The MIT Press, Cam-bridge, Mass. (1970–76).Google Scholar
  39. Kyn65a.
    Kyner, W.T., “A mathematical theory of the orbits about an oblate planet,” SIAM J. 13 (1), pp. 136–171 (1965).MathSciNetMATHGoogle Scholar
  40. Laa72a.
    Laa72a. van der Laan,L. and Verhulst,F., “The transition from ellip-tic to hyperbolic orbits in the two-body problem by slow loss of mass,” Celestial Mechanics 6, pp. 343–351 (1972).MATHCrossRefGoogle Scholar
  41. Mos70a.
    Moser, J., “Regularization of Kepler’s problem and the averaging method on a manifold,” Comm. Pure Appl. Math. 23, pp. 609–636 (1970).MathSciNetMATHCrossRefGoogle Scholar
  42. Mos73a.
    Moser, J. Moser, J., “Stable and random motions in dynamical sys-tems, with special emphasis on celestial mechanics,” Ann. Math. Studies, Princeton, N.J. 77, Princeton Univ. Press (1973).Google Scholar
  43. Stu74a.
    Stumpff, K., Himmelsmechanik,VEB Deutscher Verlag der Wissenschaften, Berlin (1959–74).Google Scholar
  44. Ver75a.
    Verhulst,F., “Asymptotic expansions in the perturbed two-body problem with application to systems with variable mass,” Celestial Mechanics 11, pp. 95–129 (1975).MathSciNetMATHCrossRefGoogle Scholar
  45. Woe72a.
    van Woerkom,P.Th.L.M., “A multiple variable approach to perturbed aerospace vehicle motion,” Thesis, Princeton (1972).Google Scholar
  46. Abr78a.
    Abraham, R. and Marsden, J.E., Foundations of Mechanics (2nd edition), The Benjamin/Cummings Publ. Co., Reading, Mass. (1978).Google Scholar
  47. Abr83a.
    Abraham,R., Marsden,J.E., and Ratiu,T., Manifolds, Tensor Analysis and Applications, Addison-Wesley Publ. Co., London (1983).Google Scholar
  48. Br73a.
    Bröcker,T. and Jänich,K., Einführung in die Differentialtopologie, Springer-Verlag, Berlin (1973).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Jan A. Sanders
    • 1
  • Ferdinand Verhulst
    • 2
  1. 1.Department of Mathematics and Computer ScienceFree UniversityAmsterdamThe Netherlands
  2. 2.Mathematical InstituteState University of UtrechtUtrechtThe Netherlands

Personalised recommendations