Skip to main content

Incompressible Newtonian Flow through Thin Pipes

  • Chapter
Applied Mathematics and Scientific Computing

Abstract

The aim of this paper is to present some results about asymptotic approximations of the incompressible viscous flow through thin (or long) pipes. The ratio between the length and the cross-section is considered as the small parameter. Using the asymptotic analysis with respect to that small parameter, the effective behaviour of the flow is found. After a simple case of one straight pipe, we study the fluid flow through a network of intersected pipes with prescribed pressure at their ends. At each junction an explicit formula for computing the value of the pressure is found. The interior layer phenomenon in vicinity of the junction is studied. The effects of the curved pipes on the flow profile are considered. Correctors for the Poiseuille flow, due to the curvedness of the pipe are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amick C.J., Steady Solutions of the Navier-Stokes Equations in Unbounded Channels and Pipes, Ann.Sc.Norm.Sup.Pisa, IV (3) (1977), 473–513.

    MathSciNet  Google Scholar 

  2. Bayada G., Chambat M., The Transition Between the Stokes Equation and the Reynolds Equation: a Mathematical Proof, Appl.Math.Optim., 14 (1986), 73–93.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ciarlet P., Plates and Junctions in Elastic Multi-structures, An Asymptotic Analysis, Masson, 1990.

    MATH  Google Scholar 

  4. Ciarlet P., Destuynder R, A Justification of the Two-Dimensional Linear Plate Model, J. de Mécanique, 18 (1979), 315–344.

    MathSciNet  MATH  Google Scholar 

  5. Conca C., Murat F., Pironneau O., The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Japan J.Math., 20 (1994), 263–318.

    MathSciNet  Google Scholar 

  6. Duvnjak A., Marusic-Paloka E., Derivation of the Reynolds equation for lubrication of the rotating shaft, Arch. Math., t 36, No 4 (2000), 239–253.

    MathSciNet  MATH  Google Scholar 

  7. Galdi G.P., An Introduction to the Mathematical Theory of the Navier—Stokes Equations, I, II, Springer—Verlag, 1994.

    Google Scholar 

  8. Gipouloux O., Maru’sic-Paloka E., Asymptotic behaviour of the incompressible Newtonian flow through thin constricted fracture, to appear in proceedings of Multiscale problems in science and technology, Dubrovnik 2000, Springer—Verlag.

    Google Scholar 

  9. Heywood J.G., Rannacher R., Turek S., Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, Int.J.Numer.Methods Fluids, 22 (1996), 325–352.

    Article  MathSciNet  MATH  Google Scholar 

  10. Jurak M., Tambaca J., Linear curved rod model. General curve. Math.Models Methods Appl.Sci., Vol 11, No 7 (2001), 1237–1253.

    Article  MathSciNet  MATH  Google Scholar 

  11. Landau L., Lifchitz E., Physique théorique: Mécanique des fluides, 3ème édition, Ellipses. 1994.

    Google Scholar 

  12. Le Dret H., Problèmes variationnels dans les multi-domaines, Masson, Paris, 1991.

    MATH  Google Scholar 

  13. Marušić S., The asymptotic behaviour of quasi-Newtonian flow through a very thin or a very long curved pipe, Asymptotic Anal. 26 (2001), 73–89.

    Google Scholar 

  14. Marušić S., Marušić-Paloka E., Two scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics, Asymptotic Anal., 23 (2000), 23–58.

    MATH  Google Scholar 

  15. Marušić-Paloka E., The effects of flexion and torsion for the fluid flow through a curved pipe, Appl.Math.Optim., 44 (2001), 245–272.

    Article  MathSciNet  MATH  Google Scholar 

  16. Marušić-Paloka E., Non-Newtonian flow through unbounded channels and pipes, Mathematical Models and Methods in Applied Sciences M3AS, Vol 10, No 9 (2000), 1425–1445.

    Article  Google Scholar 

  17. Marušić-Paloka E., Fluid flow through a network of thin pipes, C.R.Acad.Sci. Paris, Série II b, t 329 (2001), 103–108.

    MATH  Google Scholar 

  18. Marušić-Paloka E., Junction of pipes filled with viscous fluid, preprint, Department of Mathematics, University of Zagreb, submitted for publication

    Google Scholar 

  19. Marušić-Paloka E., Marušić S., Decay of a fluid flow in a weakly permeable domain, ZAMM, 79 (1999) 6, 427–432.

    Article  Google Scholar 

  20. Michal A.D., Matrix and Tensor Calculus, John Wiley and Sons, New York, 1947.

    Google Scholar 

  21. Nazarov S.A., Asymptotic solution of the Navier-Stokes problem on the flow of a thin layer of fluid, Sib.Math.J., 31 (1990), 296–307.

    Article  MATH  Google Scholar 

  22. Nazarov S.A., Piletskas K.I., The Reynolds Flow in a Thin Three-Dimensional Channel, Lithuanian Math.J., 30 (1991), 366–375.

    Article  MathSciNet  Google Scholar 

  23. Street R.L., Watters G.Z., Vennard J.K., Elementary fluid mechanics, seventh edition, Wiley, 1996.

    Google Scholar 

  24. Tutek Z., Aganović I., A Justification of the One-Dimensional Linear Model of Elastic Beam, Math. Methods Appl. Sci., 8 (1986), 502–515.

    Article  MathSciNet  MATH  Google Scholar 

  25. Van Dyke M., Perturbation methods in fluid mechanics, The Parabolic Press, Stanford, 1975.

    Google Scholar 

  26. Wanier G.H., A contribution to the hydrodymmics of lubrication, Quart.Appl.Math. 8 (1950), 1–32.

    MathSciNet  Google Scholar 

  27. Zeytounian R.Kh., Modélisation asymptotique en mécanique des fluides newtoniens, Collection SMAI, Springer Verlag, Berlin Heidelberg, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marušić-Paloka, E. (2002). Incompressible Newtonian Flow through Thin Pipes. In: Drmač, Z., Hari, V., Sopta, L., Tutek, Z., Veselić, K. (eds) Applied Mathematics and Scientific Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4532-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4532-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3390-4

  • Online ISBN: 978-1-4757-4532-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics