Skip to main content

Abstract

Recent results on mathematical modelling of curved rods are presented. More precisely, elastic behavior of a curved rod-like 3-D body is approximated by elastic behavior of its middle curve. The method of approximation is asymptotic expansion with respect to the small parameter (diameter of the cross section of the rod). Certain convergence results are proved and the obtained 1-D approximation is compared with the Cosserat model and arch model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Álvarez-Dios, J. A. and ViaÁo, J. M. (1995). Une théorie asymptotique de flexion-extension pour les poutres élastiques faiblement courbées. C. R. Acad. Sci. Paris, série I, 321: 1395–1400.

    MATH  Google Scholar 

  • Álvarez-Dios, J. A. and Viaño, J. M. (1998). Mathematical justification of a one-dimensional model for general shallow arches. Math. Meth. Appl. sci., 21: 281–325.

    Article  MATH  Google Scholar 

  • Antman, S. S. (1995). Nonlinear Problems of Elasticity. Springer-Verlag.

    Google Scholar 

  • Bermúdez, A. and Viaño, J. M. (1984). Une justification des équations de la thermo-élasticité des poutres à section variable par des méthodes asymptotiques. RAIRO Anal. Numb:, 17: 121–136.

    Google Scholar 

  • Bernadou, M. and Ducatel, Y. (1982). Approximation of General Arch Problems by Straight Beam Elements. Nume, Math., 40: 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Brezzi, F. and Fortin, M. (1991). Mixed and Hybrid Finite Element Methods. Springer-Verlag. Chatelin, F. (1983). Spectral pproximation of Linear Operators. Academic Press.

    Google Scholar 

  • Ciarlet, P. G. (1988). Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity. North-Holland.

    Google Scholar 

  • Ciarlet, P. G. and Kesavan, S. (1981). Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory. Comp. Meth. Appl. Mech. Engrg., 26: 145–172.

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet, P. G. and Destuynder, P. (1979). A justification of the two dimensional linear plate model. J. Mécanique, 18: 315–344.

    MathSciNet  MATH  Google Scholar 

  • Ciarlet, P. G., Lods, V. and Miara, B. (1996). Asymptotic analysis of linearly elastic shells. II. Justification of flexular shell equations. Arch. Rational Mech. Anal., 136: 163–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Cimetière, A., Geymonat, G., Le Dret, H., Raoult, A. and Tutek, Z. (1986). Une dérivation d’un modéle non linéaire de poutres a partir de l’élasticité tridimensionelle. C. R. Acad. Sci. Paris, série I, 302: 697–700.

    MATH  Google Scholar 

  • Cimetière, A., Geymonat, G., Le Dret, H., Raoult, A. and Tutek, Z. (1988). Asymptotic theory and analysis for displacement and stress distributions in nonlinear elastic straight slender rods. J. Elasticity, 19: 111–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Dautray, R. and Lions, J. L. (1992). Mathematical Analysis and Numerical Methods for Science and Tehnology. Volume 5 Evolution Problems I. Springer-Verlag.

    Google Scholar 

  • Davies, E. B. (1995). Spectral Theory and Differential Operators, University Press, Cambridge. Diestel, J. and Uhl, J. J. (1977). Vector measures. AMS, Mathematical Surveys, No 15.

    Google Scholar 

  • Figueiredo, I. N. and Trabucho, L. (1993). A Galerkin approximation for curved beams. Comp.Meth. Appl. Mech. Engrg. 102: 235–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Germain, R (1962). Méchanique des Milieux Continus. Masson.

    Google Scholar 

  • Giarult, V. and Raviart, R. (1986). Finite Element Methods for Navier-Stokes Equations. Springer-Verlag.

    Google Scholar 

  • Hay, G. E. (1942). The finite displacement of thin rods. Trans. Amer. Math. Soc., 51: 65–102.

    MathSciNet  Google Scholar 

  • Irago, H. and Kerdid, N. and Viaíio, J. M. (1998). Analyse asymptotique des modes de hautes fréquences dans les poutres minces, C. R. Acad. Sci. Paris, série I, 326: 1255–1260.

    Google Scholar 

  • Irago, H. and Viaiio, J. M. (1998). Second-order asymptotic approximation of flexural vibrations in elastic rods Mat. Mod. Meth. Appl. Sci.8: 1343–1362.

    Google Scholar 

  • Jamal, R. (1998). Modélisation asymptotique des comportements statique et vibratoire des tiges courbes élastiques, Thése de doctorat, De L’Université Pierre et Marie Curie, Paris 6.

    Google Scholar 

  • Jamal, R. and Sanchez-Palencia, É. (1996). Théorie asymptotique des tiges courbes anisotropes. C. R. Acad. Sci. Paris, série I, 322: 1099–1106.

    Google Scholar 

  • Jurak, M. and Tarnbaca, J. (1999). Derivation and justification of a curved rod model. Math. Mod. Meth. in Appl. Sci., 9: 991–1014.

    Google Scholar 

  • Jurak, M. and Tambaca, J. (2001). Linear curved rod model. General curve. Math. Mod. Meth. Appl. Sci., 11: 1237–1253.

    Google Scholar 

  • Jurak, M., Tambaca, J. and Tutek, Z. (1999). Derivation of a curved rod model by Kirchhoff assumptions. ZAMM, 79: 455–463.

    Article  MathSciNet  MATH  Google Scholar 

  • Jurak, M. and Tutek, Z. (1999). Wrinkled rod. Math. Mod. Meth. Appl. Sci., 9: 665–692.

    Article  MathSciNet  MATH  Google Scholar 

  • Kerdid, N. (1993). Comportement asymptotique quand l’épaisseur tend vers zéro du problème de valeurs propres pour une poutre mince encastré linéare, C. R. Acad. Sci. Paris, série I, 316: 755–758.

    MathSciNet  Google Scholar 

  • Kikuchi, F. (1982). Accuracy of some finite element models for arch problems. Comp. Meth. Appl. Mech. Engrg., 35: 315–345.

    Article  MathSciNet  MATH  Google Scholar 

  • Landau, L. D. and Lifshitz, E. M. (1970). Theory of Elasticity. Pergamon Press.

    Google Scholar 

  • Le Dret, H. (1989). Modeling of the junction between two rods. J. Math. Pures. Appl.68: 365–397.

    Google Scholar 

  • Le Dret, H. (1991). Problémes variationneles dans les multi-domains. Masson.

    Google Scholar 

  • Li-ming, X. (1998). Asymptotic analysis of dynamic problems for linearly elastic shells–Jus-tification of equations for dynamic membrane shells. Asymptotic Analysis, 17: 121–134.

    MathSciNet  Google Scholar 

  • Nečas, J. and Hlaváček, I. (1981) Mathematical Theory of Elastic and Elasto-Plastic Bodies:An Introduction. Elsevier.

    Google Scholar 

  • Raoult, A. (1985). Construction d’un modèle d’évolution de plaques avec terme d’inerte de rotation. Annali di Matematica Pura et Applicata, Serie Quarta, 139: 361–400.

    Google Scholar 

  • Saleeb, A. R. and Chang, T. Y. (1987). On the hybrid-mixed formulation of C° curved beam elements. Comp. Meth. Appl. Mech. Engrg., 60: 95–121.

    Google Scholar 

  • Sanchez-Hubert, J. and Sanchez-Palencia, É. (1999). Statics of curved rods on account of torsion and flexion. Eur. J. Mech. A/Solids, 18: 365–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Sanchez-Palencia, É. (1992). Asymptotic and spectral properties of a class of singular-stiff problems. J. Math. Pures. Appl., 71: 379–406.

    MathSciNet  MATH  Google Scholar 

  • Tambaca, J. (1999). One-dimensional models in theory of elasticity,master’s thesis, Department of Mathematics, University of Zagreb. (In Croatian).

    Google Scholar 

  • Tambaca, J. (2000). Evolution model of curved rods. PhD thesis, Department of Mathematics, University of Zagreb. (in Croatian).

    Google Scholar 

  • Tambaca, J. and Tutek, Z. (2000). Dynamic Curved Rod Model. Proceedings of the Conference on Applied Mathematics and Computation, Dubrovnik 1999, eds. V. Hari et al.

    Google Scholar 

  • Tambaèa, J. and Tutek, Z. (2000). Evolution model of curved rods. Proceedings of the Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation (Santiago de Compostela, 2000), SIAM: 197–201.

    Google Scholar 

  • Tambaca, J. (2001). One-dimensional approximations of the eigenvalue problem of curved rods. Math. Meth. Appl. Sci., 24: 927–948.

    Article  MathSciNet  MATH  Google Scholar 

  • Tambaca, J. (2002). Justification of the dynamic model of curved rods. Submitted to Asymptotic Analysis.

    Google Scholar 

  • Trabucho, L. and Viaiio, J. M. (1996). Mathematical Modelling of Rods in Handbook of Numerical Analysis, Vol. IV, Eds. P. G. Ciarlet, J. L. Lions. North-Holland.

    Google Scholar 

  • Tretter, C. (2000). Linear operator pencils A - AB with discrete spectrum. Integral Eq. Oper. Th., 37: 357–373.

    Article  MathSciNet  MATH  Google Scholar 

  • Tutek, Z. and Aganovié, I. (1986). A justification of the one-dimensional linear model of elastic beam, Math. Meth. in the Appl. Sci., 8: 1–14.

    Article  MathSciNet  Google Scholar 

  • Weinberger, H. F. (1974). Variational Methods for Eigenvalue Approximation,SIAM.

    Google Scholar 

  • Zemer, M. (1994). An asymptotically optimal finite element scheme for the arch problem. Numer. Math., 69: 117–123.

    Google Scholar 

  • Zhang, Z. (1992). Arch beam models: Finite element analysis and superconvergence. Numer. Math., 61: 117–143.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jurak, M., Tambača, J., Tutek, Z. (2002). Modelling of Curved Rods. In: Drmač, Z., Hari, V., Sopta, L., Tutek, Z., Veselić, K. (eds) Applied Mathematics and Scientific Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4532-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4532-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3390-4

  • Online ISBN: 978-1-4757-4532-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics