Skip to main content

Abstract

Domain decomposition is a major focus of contemporary research in numerical analysis of partial differential equations. Among the reasons for considering domain decomposition are: parallel computing, modeling of different physical phenomena in different subregions and complicated geometries, and its solid and elegant theoretical foundation. In this text, we provide an introduction to domain decomposition methods. We describe a general variational framework to construct and analyze domain decomposition methods in terms of subspaces and projectionlike operators. This allows a unified analysis of both Schwarz methods (where there is overlap of subregions) and substmcturing methods (where there is no overlap). We also discuss important ingredients commonly used in this research area such as inexact solvers, coarse spaces and nonnested spaces. We provide the basics of the abstract Schwarz theory, giving several proofs, in order to demonstrate the requirements needed for designing good preconditioners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdoulaev G., Achdou Y., Hontand J., Kuznetsov Y., Pironneau O., and Prud’homme C. (1998).Nonmatching grids for fluids. Domain Decomposition Methods 10, Contemporary Mathematics, J. Mandel, C. Farhat and X.-C. Cai, AMS, Vol. 218.

    Google Scholar 

  2. Achdou Y., Hontand J., and Pironneau. (1997). A mortar element method for fluids. Domain Decomposition Methods in Science and Engineering, R. Glowinski, J. Periaux, Z.-C. Shi and O. Widlund, Wiley & Sons.

    Google Scholar 

  3. Bernardi C., Maday Y., Patera A. (1994). A new nonconforming approach to domain decomposition: The mortar element method. College de France Seminar, H. Brezis and J. Lions, eds., Pitman.

    Google Scholar 

  4. Berkman M. E., Sankar L. N., Berezin C. R., and Torok M. S. (1997). Navier-Stokes/full potential/free-wake method for rotor flows J. of Aircraft, Vol. 34(5), pp. 635–640.

    Google Scholar 

  5. Mandel J., and Brezina M. (1993). Balancing domain decomposition: Theory and computations in two and three Dimensions. Center for Computational Mathematics, University of Colorado at Denver, UCD/CCM 2.

    Google Scholar 

  6. Bramble J. H., Pasciak J. E., and Schatz A. H. (1989). The construction of preconditioners for elliptic problems by substructuring IV. Math. Comp., Vol. 53, pp. 1–24.

    Google Scholar 

  7. Bramble J. H., Pasciak J. E., and Xu J. (1990). Parallel multilevel preconditioners. Math. Comp., Vol. 55, pp. 1–22.

    Google Scholar 

  8. Bramble J. H., Pasciak J. E., Wang J., and Xu J. (1991). Convergence estimates for product iterative methods with applications to domain decomposition Math. Comp., Vol. 57(195), pp. l-21.

    Article  MathSciNet  Google Scholar 

  9. Cai X.-C., Dryja M., Sarkis M. (1999). Overlapping nonmatching grid mortar element methods for elliptic problems SIAM J. Numer. Anal., Vol. 36(2), pp. 581–606.

    Google Scholar 

  10. Cai X.-C, Dryja M., and Sarkis M. (2002). A restricted additive Schwarz preconditioner with harmonic overlap for symmetric positive definite linear systems. SIAM J. Numer. Anal, (in review).

    Google Scholar 

  11. Cai X.-C., Keyes D., Paraschivoiu M., Sarkis M., and Young D. (1999). Multi-domain multi-model formulation for compressible flows: Conservative interface coupling and parallel implicit solvers for 3D unstructured meshes AIAA Paper 99–0784.

    Google Scholar 

  12. Cai X.-C., Mathew T., and Sarkis M. (2000). Maximum norm analysis of overlapping nonmatching grid discretizations of elliptic equations. SIAM J. Numer. Anal., SIAM J. Numer. Anal., 37, pp. 1709–1728.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai X.-C, and Sarkis M. (1998) Local multiplicative Schwarz algorithms for steady and unsteady convection-diffusion equations. East-West J. Numer. Math., Vol. 6.

    Google Scholar 

  14. Cai X.-C., and Widlund O. (1992). Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Statist. Comput., Vol. 13(1), pp. 243–258.

    Google Scholar 

  15. Cai X.-C., and Widlund O. (1993), Multiplicative Schwarz algorithms for some nonsymmetric and indefinite problems. SIAM J. Numer. Anal., Vol. 30(4), pp. 936–952.

    Article  MathSciNet  Google Scholar 

  16. Chesshire G., Henshaw W. (1990). Composite overlapping meshes for the solution of partial differential equations. J. of Comp. Phys., Vol. 90, pp. 1–64.

    Article  Google Scholar 

  17. Chan T., and Mathew T. (1994). Domain decomposition algorithms. Acta Numerica 1994. Cambridge University Press, pp. 61–143.

    Google Scholar 

  18. Codici C., and Wendland W. L. (1998). Domain decomposition methods and far-field boundary conditions for 2D compressible viscous flows. Proc. of ECCOMAS 98.

    Google Scholar 

  19. Dryja M., Sarkis M., and Widlund O. (1996). Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math., Vol 72, pp. 313–348.

    Article  MathSciNet  MATH  Google Scholar 

  20. Dryja M., Smith B., and Widlund O. (1994). Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal., Vol. 31(6), 1662–1694.

    Google Scholar 

  21. Dryja M., and Widlund O. (1987). An additive variant of the Schwarz alternating method for the case of many subregions. Department of Computer Science, Courant Institute, TR:339, also Ultracomputer Note 131.

    Google Scholar 

  22. Dryja M., and Widlund O. (1994). Domain Decomposition Algorithms with Small Overlap. SIAM J. Sci.Comput., Vol. 15(3), pp. 604–620.

    MathSciNet  Google Scholar 

  23. Dryja M., and Widlund O. (1995). Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems. Comm. Pure Appl. Math., Vol. 48 (2), pp. 121–155.

    Article  MathSciNet  MATH  Google Scholar 

  24. Eisenstat S. C., Elman H. C., and Schultz M. H. (1983). Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal., Vol. 20 (2), pp. 345–357.

    Google Scholar 

  25. Eijkhout V., and Vassilevski P. (1991). The role of the strengthened Cauchy Buniakowskii Schwarz inequality in multilevel methods. SIAM Review, Vol. 33(3), pp. 405–419.

    Article  MathSciNet  MATH  Google Scholar 

  26. Eisenstat S.C., and Walker H. F. (1994). Choosing the forcing terms in an inexact Newton method. SIAM J. Optimization, Vol. 4, pp. 393–422.

    Google Scholar 

  27. Golub G. H., and Van Loan G. V. (1989). Matrix computations. Johns Hopkins Univ. Press, Second Edition.

    MATH  Google Scholar 

  28. Griebei M, and Oswald P. (1995). On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math., Vol. 70, pp. 163–170.

    Google Scholar 

  29. Henshaw W. (1996). Automatic grid generation. Acta Numerica, pp. 121–148.

    Google Scholar 

  30. Henshaw W., Brislawn K., Brown D., Chesshire G., Pao K., Quinlan D., and Saltzman J. (1996). Overture: An object-oriented framework for solving PDEs on overlapping grids. LA-UR-97–4033, in Third Symposium on Composite Overset Grid and Solution Technology, Los Alamos, New Mexico.

    Google Scholar 

  31. Hestenes M. R. (1956). The conjugate gradient method for solving linear systems. Proc. Symp. Appl. Math VI, AMS, McGraw-Hill, New York, pp. 83–102.

    Google Scholar 

  32. Kuznetsov Y. (1998). Overlapping domain decomposition with nonmatching grids. Proceedings of the Ninth International Conference on Domain Decomposition Methods, P. BjOrstad, M. Espedal and D. Keyes, Wiley & Sons.

    Google Scholar 

  33. M. Lesoinne, M. Sarkis, U. Hetmaniu, and C. Farhat. (2001). A linearized method for the frequency analysis of three-dimensional fluid/structure interaction problem in all flow regimes. Comp. Meth. Appl. Mech. Eng., Vol. 190, pp. 3121–3146.

    Article  MATH  Google Scholar 

  34. Lions P. (1988). On the Schwarz alternating method I.. First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant, and J. Périaux, SIAM, Philadelphia, PA.

    Google Scholar 

  35. Mandel J. (1993). Balancing domain decomposition Comm. Numer. Meth. Engrg., Vol. 9, pp. 233–241.

    Google Scholar 

  36. Mandel J. (1994). Hybrid domain decomposition with unstructured subdomains Contemporary Mathematics. Vol. 157, pp. 103–112.

    Google Scholar 

  37. Matsokin A. M., and Nepomnyaschikh S. V. (1985). A Schwarz alternating method in a subspace. Soviet Mathematics, Vol. 29(10), pp. 78–84.

    MATH  Google Scholar 

  38. Oswald P. (1999) On the robustness of the BPX-preconditioner with respect to jumps in the coefficients. Math. Comp., Vol. 68, pp. 633–650.

    Google Scholar 

  39. Paraschivoiu M., Cai X.-C., and Sarkis M. (2000). An explicit multi-model compressible flow formulation based on the full potential equation and the Euler Equations on 3D unstructured meshes Contemporary Mathematics.

    Google Scholar 

  40. Quarteroni A., and Valli A. (1999). Domain decomposition methods for partial differential equations. Oxford University Press, Oxford.

    Google Scholar 

  41. Saad Y. (1996). Iterative methods for sparse linear systems. PWS Publishing Company, ITP.

    MATH  Google Scholar 

  42. Saad Y., and Schultz M. (1986). GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems.. SIAM J. Sci. Stat. Comput., Vol. 7, pp. 856–869

    Google Scholar 

  43. Sankar L. N., Bharadvaj B. K., and Tsung F. (1993). Three-dimensional NavierStokes/full potential coupled analysis for transonic viscous flow. AIAA J., Vol. 31, pp. 1857–1862.

    Google Scholar 

  44. Sarkis M. (1997). Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using nonconforming elements Numer. Math., Vol 77, pp. 383–406.

    Google Scholar 

  45. Sarkis M., and Koobus B. (2000). A scaled and minimum overlap restricted additive Schwarz method with application on aerodynamics. Comp. Meth. Appl. Mech. and Eng., 184, pp. 391–400.

    Article  MATH  Google Scholar 

  46. Schwarz A. H. (1890). Gesammelte mathematische abhaundlungen. Springer, Vol. 2, pp. 133–143.

    Google Scholar 

  47. Smith B., Bjorstad P., Gropp W. (1996). Domain ecomposition: Parallel multilevel methods for elliptic partial differential equations Cambridge University Press.

    Google Scholar 

  48. Starius G. (1977). Composite mesh difference methods for elliptic boundary value problems. Numer. Math., Vol. 28, pp. 243–258.

    Article  MathSciNet  MATH  Google Scholar 

  49. Steger J., and Benek J. (1987). On the use of composite grid schemes in computational aerodynamics. Comp. Methods Appl. Mech. Engr., Vol. 64, pp. 301–320.

    Google Scholar 

  50. Suhs N., and Tramel R. (1991). PEGSUS 4.0 User’s manual, Calspan Corp./AEDC Operation, June.

    Google Scholar 

  51. Xu J. (1992). Iterative methods by space decomposition and subspace correction SIAM Review, Vol 34, pp. 581–613.

    Google Scholar 

  52. Zhang X. (1992). Multilevel Schwarz methods Numer. Math., Vol. 63, Vol. 4, pp. 512539.

    Google Scholar 

  53. Widlund O. (1988). Iterative substructuring methods: algorithms and theory for elliptic problems in the plane. First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Edited by Roland Glowinski and Gene H. Golub and Gérard A. Meurant and Jacques Pénaux, SIAM, Philadelphia, PA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sarkis, M. (2002). Domain Decomposition Methods. In: Drmač, Z., Hari, V., Sopta, L., Tutek, Z., Veselić, K. (eds) Applied Mathematics and Scientific Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4532-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4532-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3390-4

  • Online ISBN: 978-1-4757-4532-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics