Sensory Neurophysiology and Reaction Time Performance in Nonhuman Primates

  • Josef M. Miller
  • Joseph Kimm
  • Ben Clopton
  • Eberhard Fetz


It was clear from the conference that information is rapidly accumulating on sensory behavior in animals. Psychophysical relationships between stimulus and response parameters recently derived from animal subjects have been shown to be as reliable and precise as those obtained from man. Moreover, through analysis of these stimulus-response functions we are acquiring a better understanding of the influence of various stimulus parameters on behavior. One of the basic themes of the conference concerned the extension of our understanding of sensory functions to include the role of afferent neural structures in behavior. Contemporary behavioral procedures yielding psychophysical functions in animals provide a vehicle for such an extension. Simply stated, this approach suggests that we begin to study afferent neural activity in behaviorally trained animals from which precise measures of psychophysical relationships may be concurrently obtained.


Stimulus Intensity Auditory Cortex Reaction Time Task Lateral Geniculate Nucleus Cortical Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ades, H. W., and R. E. Felder. 1945. The acoustic projection system: a comparative study. J. Neurophysiol., 8:463–470.PubMedGoogle Scholar
  2. Barlow, J. S., and M. A. B. Brazier. 1954. Note on a correlator for electroencephalographic work. Electroenceph. Clin. Neurophysiol., 6:321–325.PubMedCrossRefGoogle Scholar
  3. Bartlett, N. R., and S. MacLeod. 1954. Effect of flash and field luminance upon human reaction time. J. Opt. Soc. Amer., 44:306–311.CrossRefGoogle Scholar
  4. Biedenbach, M. A., and C. F. Stevens. 1969a. Electrical activity in the cat olfactory cortex produced by synchronous orthodromic volleys. J. Neurophysiol., 32:193–203.PubMedGoogle Scholar
  5. Biedenbach, M. A., and C. F. Stevens. 1969b. Synaptic organization of cat olfactory cortex as revealed by intracellular recording. J. Neurophysiol., 32:204–214.PubMedGoogle Scholar
  6. Brazier, M. A. B., K. F. Killam, and A. J. Hance. 1961. The reactivity of the nervous system in the light of the past history of the organism. In Rosenblith, W. A., ed. Sensory Communication, Cambridge, Mass., M.I.T. Press, pp. 699–716.Google Scholar
  7. Cattell, J. M., and C. S. Dolley. 1895. On reaction times and the velocity of the nervous impulse. Mem. Nat. Acad. Sci., 7:391–415.Google Scholar
  8. Clark, W. A., R. M. Brown, M. H. Goldstein, C. E. Molnar, D. F. O’Brien, and H. E. Zieman. 1961. The average response computer (ARC): a digital device for computing averages and amplitude and time histograms of electrophysiological responses. IRE Trans. Bio-Med. Electron., 8:46–51.CrossRefGoogle Scholar
  9. Daniel, P. M., and D. Whitteridge. 1961. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (London), 159:203–221.Google Scholar
  10. Doty, R. W., L. T. Rutledge, Jr., and R. M. Larson. 1956. Conditioned reflexes established to electrical stimulation of cat cerebral cortex. J. Neurophysiol., 19:401–415.PubMedGoogle Scholar
  11. Doty, R. W., D. S. Kimura, and G. J. Morgenson. 1964. Photically and electrically elicited responses in the central visual system of the squirrel monkey. Exp. Neurol., 10:19–51.PubMedCrossRefGoogle Scholar
  12. Dustman, R. E. 1965. Phase of alpha brain waves, reaction time, and visually evoked potentials. Electroenceph. Clin. Neurophysiol., 18:433–440.PubMedCrossRefGoogle Scholar
  13. Evarts, E. V. 1966. Pyramidal tract activity associated with a conditioned hand movement in the monkey. J. Neurophysiol., 29:1011–1027.PubMedGoogle Scholar
  14. Froeberg, S. 1907. The relation between the magnitude of stimulus and the time of reaction. Arch. Psychol., 1:1–38.Google Scholar
  15. Haider, M., P. Spong, and D. B. Lindsley. 1964. Attention, vigilance, and cortical evoked potentials in humans. Science, 145:180–182.PubMedCrossRefGoogle Scholar
  16. Helmholtz, H. von. 1853. Über die Methoden. Kleinste Zeittheile zu Messen, und ihre Anwendung für physiologische Zwecke. Philos. Mag., pp. 313–325.Google Scholar
  17. Herman, L. 1879. Handbuch der Physiologie. Leipzig, F. C. W. Vogel, vol. 2, p. 16.Google Scholar
  18. Hind, J. E., D. J. Anderson, J. F. Brugge, and J. E. Rose. 1967. Coding of information pertaining to paired low-frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol., 30:794–816.PubMedGoogle Scholar
  19. Hughes, J. R. 1964. Responses from the visual cortex of unanesthetized monkeys. Int. Rev. Neurobiol., 7:99–152.CrossRefGoogle Scholar
  20. Kennedy, T. T. 1955. An electrophysiological study of the auditory projection area of the cortex in monkey (Macaca mulatta). Doctoral Dissertation, University of Chicago. Ann Arbor, Mich., University Microfilms.Google Scholar
  21. Luschei, E. 1968. Motor mechanisms and reaction time. Doctoral Dissertation, University of Washington. Ann Arbor, Mich., University Microfilms.Google Scholar
  22. Miller, J. M. 1965. Neural circuits and reaction time performance in monkeys. Doctoral Dissertation, University of Washington. Ann Arbor, Mich., Ann Arbor Microfilms.Google Scholar
  23. Miller, J. M. and M. G. Glickstein. 1967. Neural circuits involved in visuomotor reaction time in monkeys. J. Neurophysiol., 30:399–414.Google Scholar
  24. Miller, J. M., M. G. Glickstein, and W. C. Stebbins. 1966. Reduction of response latency in monkeys by a procedure of differential reinforcement. Psychon. Sci., 5:177–178.Google Scholar
  25. Miller, J. M., D. B. Moody, and W. C. Stebbins. 1969. Evoked potentials and auditory reaction time in monkeys. Science, 163:592–594.PubMedCrossRefGoogle Scholar
  26. Morrell, L. K., and F. Morrell. 1966. Evoked potentials and reaction times: a study of intra-individual variability. Electroenceph. Clin. Neurophysiol., 20:567–575.PubMedCrossRefGoogle Scholar
  27. Mountcastle, V. B., W. H. Talbot, and H. H. Kornhuber. 1966. The neural transformation of mechanical stimuli delivered to the monkey’s hand. In deReuck, A.V.S., and Knight, J., eds. Touch, Heat and Pain, A Ciba Foundation Symposium, London, Churchill, pp. 325–351.Google Scholar
  28. Purpura, D. P. 1959. Nature of electrocortical potentials and synaptic organizations in cerebal and cerebellar cortex. Int. Rev. Neurobiol., 1:47–163.PubMedCrossRefGoogle Scholar
  29. Stebbins, W. C., and J. M. Miller. 1964. Reaction time as a function of stimulus intensity for the monkey. J. Exp. Anal. Behav., 7:309–312.PubMedCrossRefGoogle Scholar
  30. Stebbins, W. C., and R. W. Reynolds. 1964. Note on changes in response latency following discrimination training in the monkey. J. Exp. Anal. Behav., 7:229–231.PubMedCrossRefGoogle Scholar
  31. Stebbins, W. C., S. Green, and F. L. Miller. 1966. Auditory sensitivity of the monkey. Science, 153:1646–1647.PubMedCrossRefGoogle Scholar
  32. Stevens, C. F. 1969. Structure of cat frontal olfactory cortex. J. Neurophysiol., 32:184–192.PubMedGoogle Scholar
  33. Talbot, S. A., and W. H. Marshall. 1941. Physiological studies on neural mechanisms of visual localization and discrimination. Amer. J. Ophthamol., 24:1255–1264.Google Scholar
  34. Towe, A. L. 1966. On the nature of the primary evoked response. Exp. Neurol., 15: 113–139.PubMedCrossRefGoogle Scholar
  35. Towe, A. L. and T. T. Kennedy. 1961. Response of cortical neurons to variation of stimulus intensity and locus. Exp. Neurol., 3:570–587.PubMedCrossRefGoogle Scholar
  36. Tunturi, A. R. 1962. Frequency arrangement in anterior ectosylvian auditory cortex of dog. Amer. J. Physiol., 203:185–193.Google Scholar
  37. Werner, G., and V. B. Mountcastle. 1965. Neural activity in mechanoreceptive cutaneous afferents: stimulus-response relation, Weber functions, and information transmission. J. Neurophysiol., 28:359–397.PubMedGoogle Scholar
  38. Woodrow, H. 1915. Reactions to the cessation of stimuli and their nervous mechanism. Psychol. Rev., 22:423–452.CrossRefGoogle Scholar
  39. Woolsey, C. N. 1961. Organization of cortical auditory system. In Rosenblith, W. A., ed. Sensory Communication, Cambridge, Mass., M.I.T. Press, pp. 235–258.Google Scholar

Copyright information

© Springer Science+Business Media New York 1970

Authors and Affiliations

  • Josef M. Miller
    • 1
  • Joseph Kimm
    • 1
  • Ben Clopton
    • 2
  • Eberhard Fetz
    • 2
  1. 1.Departments of Otolaryngology, Physiology and Biophysics, and Regional Primate Research CenterUniversity of Washington Medical SchoolSeattleUSA
  2. 2.Departments of Physiology and Biophysics, and Regional Primate Research CenterUniversity of Washington Medical SchoolSeattleUSA

Personalised recommendations