Solid State Reaction Kinetics IV: The Analysis of Chemical Reactions by Means of the Weibull Function

  • E. A. Dorko
  • W. Bryant
  • T. L. Regulinski

Abstract

There is a good deal of interest in the analysis of reactions which are initially heterogeneous, solid state reactions but which end up as homogeneous, liquid phase reactions.1 This interest stems from the determination of the true melting point of a material which reacts during melting. Also, since organic systems are potentially useful as heat transfer and temperature sensing agents, it is of interest to have a mathematical model of their decomposition on melting.

Keywords

Solid State Reaction Benzoyl Peroxide Malonic Acid Weibull Function Liquid Phase Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    E.A. Dorko, and R.W. Crossley, J. Phys. Chem., 76, 2253 1972;CrossRefGoogle Scholar
  2. 1. (b)
    R.N. Rogers, Thermochea. Acta 437 (1973);Google Scholar
  3. 1. (c)
    Yu. Ya. Maksimov, RussianJ., Phys. Chem., 41, 635 (1967);Google Scholar
  4. 1. (d)
    F.I. Dubovitskii, G.B. Manelis, and A.G. Merzhanov, Dokl. Akad. Nauk SSSR, 121, 549 (1958);Google Scholar
  5. 1. (e)
    G.B. Manelis and F.K. Dubovitskii, Dokl. Akad. Nauk SSSR., 124, 475 (1959).Google Scholar
  6. 2.
    W. Weibull, J. App. Mechanics, 18, 293 (1951).Google Scholar
  7. 3.
    A Fapoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Company, New York, 1965.Google Scholar
  8. 4.
    A.A. Frost and R.G. Pearson, Kinetics and Mechanics, 2nd ed, John Wiley & Sons, Inc., New York, 1961, p 13.Google Scholar
  9. 5. (a)
    A.R. Allnott and P.W.M. Jacobs, Canadian J. of Chemistry, 46, 111 (1967);CrossRefGoogle Scholar
  10. 5. (b)
    M. Avrami, J. Chem. Phys. 7, 1103 (1939)CrossRefGoogle Scholar
  11. 5. (ba)
    M. Avrami, J. Chem. Phys. 8, 212 (1940)CrossRefGoogle Scholar
  12. 5. (bb)
    M. Avrami, J. Chem. Phys. 9, 177 (1941);CrossRefGoogle Scholar
  13. 5. (c)
    B.V. Erofeev, Comp. Rend. Acad. Sci. U.R.S.S., 52, 511 (1946).Google Scholar
  14. 6.
    For a review of this area see L.G. Harrison, “The Theory of Kinetics” Ch 5 in Comprehensive Chemical Kinetics, C.H. Bamford and C.F.H. Tipper, ed., vol 2, Elsevier Publishing Co., New York, 1969.Google Scholar
  15. 7.
    J.N.K. Kao, Technometrics, 1, 389 (1959).CrossRefGoogle Scholar
  16. 8.
    E.A. Dorko, R.S. Hughes, and C.R. Downs, Anal. Chem., 42, 253 (1970).CrossRefGoogle Scholar
  17. 9.
    F.J. Massey, American Statistical Association Journal, 46, 68 (1951).CrossRefGoogle Scholar
  18. 10.
    C.N. Hinsheiwood, J. Chem., Soc, 117, 157 (1920).Google Scholar
  19. 11.
    D.H. Fine and P. Gray, Combust. Flame, 11, 71 (1967).CrossRefGoogle Scholar
  20. 12.
    W.H. Richardson and H.E. O’Neal, “The Unimolecular Decomposition and Isomerization of Oxygenated Organic Compounds (Other than Aldehydes and Ketones),” Ch 4 in Comprehensive Chemical Kinetics, C.H. Bamford and C.F.H. Tipper, ed., vol 5, Elsevier Publishing Co., New York, 1972, p 495.Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • E. A. Dorko
    • 1
  • W. Bryant
    • 1
  • T. L. Regulinski
    • 1
  1. 1.Departments of Aero-Mechanical and Electrical EngineeringAir Force Institute of TechnologyUSA

Personalised recommendations