A 7.2 GHz Bipolar Operational Transconductance Amplifier for Fully Integrated OTA-C Filters

  • M. Atarodi
  • J. ChomaJr.


Using a complementary bipolar junction transistor process having NPN transistors with a maximum short circuit common emitter gain-bandwidth product (f T ) of 7.2 GHz and PNP transistors with a maximum f T of 4.5 GHz, an operational transconductance amplifier has been designed for a 3-dB bandwidth of 7.2 GHz. The design process invokes new phase compensation strategies and develops innovative new ways of exploiting existing broadbanding techniques. The utility of the design is confirmed by demonstrating its application in two operational transconductance amplifier-capacitance filters. One of these examples is a 225 MHz lowpass filter, while the other is a bandpass filter with a center frequency of 250 MHz.


Dominant Pole Phase Compensation Analog Integrate Circuit Operational Transconductance Amplifier Capacitive Shunt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grebene, A. B., Bipolar and MOS Analog Integrated Circuit Design, chap. 8. New York: Wiley-Interscience, 1984.Google Scholar
  2. 2.
    Solomon, J. E. and Wilson, G. R., “A highly desensitized wideband monolithic amplifier,” IEEE J. Solid-State Circuits, Vol. SC-1, pp. 19–28, Sept. 1966.Google Scholar
  3. 3.
    Gilbert, B., “A new wideband amplifier technique,” IEEE J. Solid-State Circuits, Vol. SC-3, pp. 353–365, Dec. 1968.Google Scholar
  4. 4.
    Mataya, J. A., Haines, G. W. and Marshall, S. B., “IF amplifier using Cc-compensated transistors,” IEEE J. Solid-State Circuits, Vol. SC-3, pp. 401–407, Dec. 1968.Google Scholar
  5. 5.
    Camenzind, H. R. and Grebene, A. B., “An outline of design techniques for linear integrated circuits,” IEEE J. Solid-State Circuits, Vol. SC-4, pp. 110–122, June 1969.Google Scholar
  6. 6.
    Wooley, B. A., “Automated design of DC-coupled monolithic broad-band amplifiers,” IEEE J. Solid-State Circuits, Vol. SC-6, pp. 24–34, Feb. 1971.Google Scholar
  7. 7.
    Couglin, J. B., Gelsing, R. J., Jochems, P. J. and van der Laak, 14. J. M., “A monolithic silicon wideband amplifier from DC to 1 GHz,” IEEE J. Solid-State Circuits, Vol. SC-8, pp. 414–419, Dec. 1973.Google Scholar
  8. 8.
    Meyer, R. G. Eschenbach, R., and Chin, R., “A Wideband ultralinear amplifier from DC to 300 MHz” IEEE J. Solid-State Circuits,Vol. SC-9,pp. 167–175, Aug. 1974.Google Scholar
  9. 9.
    Allen, P.and Terry, M. B.,“Use of current amplifiers for high performance voltage applications,”. IEEE J. Solid-State Circuits, Vol. SC-15, pp. 155–162, 1980.Google Scholar
  10. 10.
    Meyer, R. G. and Blauschild, R., “A four terminal wideband monolithic amplifier,” IEEE J. Solid-State Circuits; Vol. SC-17, pp. 634–638, Dec. 1981.Google Scholar
  11. 11.
    Choma, J., Jr., “Gain and bandwidth characteristics of a variable gain, actively neutralized, differential pair,” IEEE Trans. Circuits and Systems, Vol. CAS-33, pp. 66–71, Jan. 1986.CrossRefGoogle Scholar
  12. 12.
    Choma, J., Jr., “Simplified design guidelines for dominant pole amplifiers peaked actively by emitter or source followers,” IEEE Trans. Circuits and Systems, Vol. 36, pp. 1005–1010, July 1989.Google Scholar
  13. 13.
    Armijo, C. T. and Meyer, R. G., “A new wide-band Darling-ton amplifier,” IEEE J. Solid-State Circuits, Vol. SC-24, pp. 1105–1109, Aug. 1989.Google Scholar
  14. 14.
    Beall, W. G. and Choma,.1., Jr., “Charge-neutralized differential pair,” J. of Analog Integrated Circuits and Systems, Vol. I, pp. 33–44, Sept. 1991.Google Scholar
  15. 15.
    Degrauwe, M. G. R., “CMOS voltage references using lateral bipolar transistors,” IEEE J. Solid State Circuits, Vol. SC-20, pp. 1151–1157, December 1985.Google Scholar
  16. 16.
    Wyszynski, A., Schaumann, R., Szczepanski, S. and Halen, P. V., “Design of a 2.7 GHz linear OTA in bipolar transistor,array technology with lateral PNPs ” Proc. IEEE International Symp. on Circuits and Systems, pp. 2844–2847, 1992.Google Scholar
  17. 17.
    Gray, P. R. and Meyer, R. G., Analysis and Design of Analog Integrated Circuits. New York: John Wiley Sons, chap. 6, 1977.Google Scholar
  18. 18.
    Franco, S., Design with Operational Amplifiers and Analog ICs. New York: McGraw-Hill, 1988.Google Scholar
  19. 19.
    Franco, S., Current Feedback Amplifiers Benefit High Speed Designs. EDN, 1989.Google Scholar
  20. Koullias, 1. A., “A wideband low-offset current-feedback op amp design,” Proc. Bipolar Circuits and Teck Mtg.,pp. 120123,1989.Google Scholar
  21. 21.
    Lidgey, F. J. and Toumazou, C., “Current-mode analogue signal processing,” Proc. Bipolar Circuits and Tech. Mtg., pp. 224–232, 1991.Google Scholar
  22. 22.
    Jost, S. R., “An 850 MHz current feedback operational amplifier,” Proc. Bipolar Circuits and Tech. Mtg., pp. 71–74, 1992.Google Scholar
  23. 23.
    Toumazou, C. and Lidgey, F. J., “Extending voltage-mode amplifiers to current-mode performance,” lEE Proc. G. Electron. Circuits and Systems,Vol. 137, pp. 116–130.Google Scholar
  24. 24.
    Atarodi, M. and Choma, J., Jr., “High frequency fully integrated OTA-C filters using a 7.2 GHz bipolar OTA,” Proc. IEEE 36th Midwest Symp. on Circuits and Systems, 1993.Google Scholar
  25. Witherspoon, S. and Choma, J., Jr., “The analysis of balanced linear differential circuits,” IEEE Trans. on Education (to be published in Dec. 1995).Google Scholar
  26. 26.
    Moree, J. P., Groenwold, G. and van den Broeke, L. A. D., “A bipolar integrated continuous-time filter with optimized dynamic range,” IEEE J. of Solid-State Circuits, pp. 954–961, Sept. 1993.Google Scholar
  27. 27.
    Moinian, S. and Choma, J., Jr., “The frequency response of bipolar transistor noise figure,” IEEE Trans. on Circuits and Systems, Vol. CAS-33, pp. 72.-76, Jan. 1986.Google Scholar
  28. 28.
    Choma, J., Jr. and Witherspoon, S. A., “Computationally efficient estimation of frequency response and driving point impedance in wideband analog amplifiers,” IEEE Trans. on Circuits and Systems, Vol. CAS-37, pp. 720–728, June 1990.Google Scholar
  29. 29.
    Geiger, R. L. and Sanchez•Sinencio, E., “Active filter design using operational transconductance amplifiers: a tutorial,” IEEE Circuits and Devices Magazine, pp. 20–32, 1985.Google Scholar
  30. 30.
    Atarodi, M., Analysis and Design of Operational Transconductance Amplifiers for Ota-C Filter Applications, Ph. D. Dissertation, University of Southern California, Los Angeles, California, Aug. 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. Atarodi
    • 1
  • J. ChomaJr.
    • 2
  1. 1.Linear Technology CorporationMilpitasUSA
  2. 2.Department of Electrical Engineering-ElectrophysicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations