Skip to main content
  • 223 Accesses

Abstract

In this chapter motion estimation architectures are evaluated for the requirements of the visual (video) part of the MPEG-4 standard. Due to the very complex nature of the design space for motion estimation VLSI architectures, there are numerous VLSI architectures and design trade-offs. Proper consideration of these trade-offs can lead to an optimal VLSI architecture design for a selected motion estimation (ME) algorithm or a number of selected motion estimation algorithms under particular application constraints. The aim of this chapter is to evaluate block-matching motion estimation algorithms from a hardware point of view for MPEG-4. This is in contrast to the previous chapter where the block-matching algorithms were evaluated in terms of number of operations and memory bandwidth for software implementation on a programmable processor. It will be shown that the commonly used complexity metric of the number of operations for a processor implementation is not suitable for VLSI implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Vasudev Bhaskaran, Konstantinos Konstantinides: “Image and Video Compression Standards”, Kluwer Academic Publishers, 1995, p237–247

    Google Scholar 

  2. V. Bhaskaran, K. Konstanitides, R.B. Lee, J. P. Beck: Algorithmic and Architectural Enhancements for Real-Time MPEG-1 Decoding on a general Purpose RISC workstation“, IEEE Trans. on circuits and systems for video technology, vol. 5, no. 5, Oct. 1995

    Google Scholar 

  3. Aaron Boxer: “Where Buses cannot go”, IEEE Spectrum, vol. 32, no. 2, 1995, p 41–45

    Article  MathSciNet  Google Scholar 

  4. David A. Carlson, Ruben W. Castelino, Robert O. Mueller: “Multimedia Extensions for a 550-MHz RISC Microprocessor”, IEEE Journal for Solid-State Circuits, Vol. 32, No. 11, November 1997, p1618–1624

    Article  Google Scholar 

  5. Wei Ding, Alex Z.J. Mou and Daniel Rice: “A standard-based software-only video conference codec on ultra-sparc”, SPIE Vol. 3309, Visual Communications and Image Processing, San Jose 1998, p535–542

    Google Scholar 

  6. Zhong L. He, Ming L. Liou: “Design Trade-Offs for Real-Time Block-Matching Motion Estimation”, Lecture Notes on Computer Science, Image Analysis and Processing, 1996, pp 129–138

    Google Scholar 

  7. L. Kohn, G. Maturana, M. Tremblay, A. Prabhu, G. Zyner: “ The visual instruction Set ( VIS) on UItraSPARC”, IEEE Compcon, 1995, p462–469

    Google Scholar 

  8. S.Y. Kung: “VLSI Array Processors”, Prentice Hall, Englewood Cliffs, 1988

    Google Scholar 

  9. Paul Kala: “Hardware/Software Interactions on the MPACT media processor”, Hot Chips VIII, Stanford, California, august 19–20, 1996, p 179–191

    Google Scholar 

  10. P. Knebel, B. Arnold, M. Bass, W. Kever, J.D. Lamb, R.b. Lee, P. L. Perez, S. Undy, W. Walk- er: “ HP’s PA7100LC: A low-cost superscalar PA-RISC processor”, IEEE Compcon, 1993, p441–447

    Google Scholar 

  11. Kneip J., Bauer S., Vollmer J., Schmale B., Kuhn P.: „The MPEG-4 video coding standard - A VLSI point of view“, IEEE Workshop on Signal Processing Systems (SIPS), Cambridge, MA, USA, Oct 1998

    Google Scholar 

  12. Vijay K. Madisetti: “VLSI Digital Signal Processors–An Introduction to Rapid Prototyping and Design Synthesis”, Butterworth Heinemann/IEEE Press, 1994, p446–494

    Google Scholar 

  13. A. Mou, D. Rice, W. Ding: “VIS-based native video processing on Ultra SPARC”, Proc. IEEE International Conference on Image Processing, vol II, Sep 1996, p 153–156

    Google Scholar 

  14. (MPEG) MPEG web site, internet: http://www.cselt.it/mpeg

    Google Scholar 

  15. NEC Electronics: “CBC-C 10 Family, 0.25 mm Cell-Based IC - preliminary user’s manual”, n.p., January 1998

    Google Scholar 

  16. R. Lee: “Accelerating Multimedia with Enhanced Microprocessors”, IEEE Micro, April 1995, p 22–32

    Google Scholar 

  17. Hartmut Schmeck: “Analyse von VLSi-Algorithmen”, Spektrum-Verlag, Heidelberg, Berlin, Oxford, 1995, chapter 3 (in german].

    Google Scholar 

  18. ITU-Telecommunication Standardization Sector-Study Group 16 Video Coding Experts Group: Video Codec Test Model Near Term Version 9

    Google Scholar 

  19. Kazunori Yasuda, Tsuyoshi Oda, Kouichi Uchide: “Apparatus for detecting motion vector and encoding picture sign”, European Patent Application, EP 0695 096 Al, 1996, 17 p

    Google Scholar 

Motion Estimation VLSI

  1. Lirida Alves de Banos, Nicolas Demassieux: “Real-time architecture for large displacements estimation”, SPIE Proceedings Vol. 2308: ‘Visual Communications and image Processing ‘84, 1994, pp 1765–1776

    Google Scholar 

  2. Yunju Baek, Hwang-Soek Oh and Heung-Kyu Lee: “Block-matching critenon for efficient VLSI implementation for motion estimation”, IEE Electronics Letters, 20th June 1996, vol. 32, no. 13, Jun 1996, pp 1184–1185

    Google Scholar 

  3. J. P. Berns, T.G. Noll: “A flexible Motion Estimation Chip for Vanable Size Block Matching”, ASAP’ 96, international Conference on Application-Specific Systems, Architectures and Processors, Chicago, 1996

    Google Scholar 

  4. J. P. Berns, T.G. Noll: “A cascadable 200 GOPS Motion Estimation Chip for HDTV Application”, IEEE Custom Integrated Circuits Conference, San Diego, May 5–8, 1996, p355–358

    Article  Google Scholar 

  5. J. P. Berns, T.G. Noll. “200 GOPS Prozesor für die objektbasierte Bewegungsschätzung im digitalHDTV”, GMM Fachbericht Mikroelektronik, 1997, p143–148

    Google Scholar 

  6. J. Bracamonte, I. Defilippis, M. Ansorge, F. Pellandini: “Bit-serial parallel processing VLSI architecture for a blockmatching motion estimation algorithm”, International Picture Coding Symposium, PCS 94, 1994, p22–25

    Google Scholar 

  7. Alexander Bugeja, Woodward Yang: “A reconfigurable VLSI coprocessing system for the blockmatching algorithm”, IEEE Transactions on very large scale integration (VLSI) systems, vol. 5, no. 3, sept. 1997, p329–337

    Google Scholar 

  8. Eric Chan, Sethuraman Panchananthan: “Motion Estimation Architecture for Video compression”, IEEE Trans. on Consumer Electronics, vol. 39, no. 3, aug. 1993, pp. 292–297

    Google Scholar 

  9. Shifan Chang, Juin-Haur Hwang, Chem-Wei Jen: “Scalable Array Architecture Design for Full Search Block Matching”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, no. 4, aug. 1995, pp. 332–343

    Google Scholar 

  10. D. Charlot, J.-M. Bard, B. Canfield, C. Cuney, A. Graf, A. Pirson, D. Teichner, F. Yassa: “A RISC Controlled Motion Estimation Processor for MPEG-2 and HDTV Encoding”, ICASSP 95, vol. 5, p 32–87

    Google Scholar 

  11. Sau-Gee Chen: “An area/time-efficient motion estimation micro core”, IEEE Transactions on Consumer Electronics, vol. 39, no. 3, aug 1993, p 298–303

    Google Scholar 

  12. Mei-Juan Chen, Liang-Gee Chen, Tzi-Dar Chiueh, Yung-Pin Lee: “A new block-matching criterion for motion estimation and its implementation”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, no. 3, Jun. 1995, pp 231–236

    Article  Google Scholar 

  13. Sheu-Chih Cheng and Hsueh-Ming Hang: “A Comparison of Block-Matching Algorithms for VLSI-Implementations”, SPIE Proceedings Vol. 2727, Visual Communications and Image Processing, 1996, pp 994–1005

    Google Scholar 

  14. Sheu-Chih cheng, Hsueh-Ming Hang: “A Comparison of Block-Matching Algorithms Mapped to Systolic-Array implementation”, IEEE Transactions on circuits and systems for video technology, vol. 7, no. 5, oct 1997, pp. 741–757

    Google Scholar 

  15. Hsueh-Ming Hang, Yung-Ming Chou, Sheu-Chih Cheng: “Motion Estimation for Video Coding Standards”, Journal of VLSI Signal Processing, 1997 Kluwer Academic Publishers, Netherlands, pp. 113–136

    Google Scholar 

  16. R. Cmar, S. Vemalde: “Highly scalable parallel parametrizable architecture of the motion estimator”, “IEEE ED ttt TC 97 (European Design ttt Test Conference), Paris, France, Mar. 1997, pp. 208–212

    Google Scholar 

  17. Oswald Colavin, Alain Artieri, Jean-Francois Naviner, Renaud Pacalet: “A dedicated circuit for real time motion estimation”, EUROASiCs 1991

    Google Scholar 

  18. Alessandra Costa, Alessandro De Gloria, Paolo Faraboschi, Filippo Passagio: “A VLSI Architecture for hierarchical motion estimation”, IEEE Trans. on Consumer Electronics, vol. 41, no. 2, may 1995, p 248

    Google Scholar 

  19. S. Dogimont, M. Gumm, F. Mombers, D. Mlynek, A. Torielli: “Conception and Design of a RISC CPU for the use as embedded controller within a parallel multimedia architecture”, IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 97), Zurich, Switzerland, July 1997, pp 412–421

    Google Scholar 

  20. Santanu Dutta and Wayne Wolf: “A Flexible Parallel Architecture Adapted to Block-Matching Motion-Estimation Algorithms”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 1, feb 1996, pp 74–86

    Google Scholar 

  21. Santanu Dutta, Wayne Wolf, Andrew Wolfe: “A methodology to evaluate memory architecture design tradeoffs for video signal processors”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 1, feb 1998, pp. 36–53

    Google Scholar 

  22. Emmanuel D. Frimout, Johannes N. Driessen, Ed F. Deprettere: “Parallel Architecture for a PelRecursive Motion Estimation Algorithm”, IEEE Transactions on Circuits and systems for video technology, vol. 2, no. 2, Jun. 1992, p159–168

    Google Scholar 

  23. E. De Greef, F. Catthoor, H. De Man: “A memory efficient, programmable multi-processor architecture for real-time motion estimation type algorithms”, Algorithms and Parallel VLSI Architectures III, M. Moonen and F.Catthoor ( Editors ), Elsevier Publishers, vol. III, 1995, p191–202

    Book  Google Scholar 

  24. Gagan Gupta and Chaitali Chakrabarti: “Architectures for Hierarchical and other Block Matching Algorithms”, “IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, no. 6, dec 1995, p 477–489

    Google Scholar 

  25. E. Hanssens and J.-D. Legat: “A parallel Processor for Motion Estimation”, SPIE Vol. 2727, 1996, pp 1006–1016

    Article  Google Scholar 

  26. Zhong L. He, Ming L. Liou: “Design Trade-Offs for Real-Time Block-Matching Motion Estimation”, Lecture Notes in Computer Science: Recent developments in Computer Vision, 1996, pp. 129–138

    Google Scholar 

  27. Zhong-Li He, Kai-Keung Chan, Chi-Ying Tsui, Ming L. Liou: “Low Power Motion Estimation Design Using Adaptive Pixel Truncation”, IEEE Proceedings of 1997 International Symposium on Low Power Electronics and Design, 1997, pp 167–171

    Google Scholar 

  28. He 974 Zhong L. He, Ming L. Liou: “Cost effective VLSI architectures for full-search block-matching motion estimation algorithm”, Journal of VLSI Signal Processing, no. 17, Kluwer Academic Publishers, Netherlands, 1997, pp. 225–240

    Google Scholar 

  29. Chaur-Heh Hsieh, Ting-Pang Lin: “VLSI Architecture for block-matching motion estimation algorithm”, IEEE Circuits and Systems for Video technology, vol. 2, no. 2, jun 1992, pp. 169–175

    Google Scholar 

  30. Shih-Yu Huang and Kuen-Rong Hsieh and Jia-Shung Wang: “Very large scale integration (VLSI) architecture for motion estimation and vector quantization”, SPIE Proceedings Vol. 2308, Visual Communications and Image Processing, 1994, pp. 1742–1752

    Google Scholar 

  31. Kazuya Ishihara, Shinichi Masuda, Shinichi Hattori, Hirofumi Nishikawa, Yoshihide Ajioka, Tsuyoshi Yamada, Hiroyuki Amishiro, Masahiko Yoshimoto: “A half-pel Precision MPEG2 Motion-Estimation Processor with Concurrent Three-Vector Search”, ISSCC 95, 1995, pp. 288–189

    Google Scholar 

  32. Kazuya Ishihara, S. Masuda, S. Hattori, H. Nishikawa, Y. Ajioka, T. Yamada, H. Amishiro, S. Uramoto, M. Yoshimoto, T. Sumi: “A Half-pel precision MPEG-2 Motion Estimation Processor with concurrent Three-vector search”, IEEE Journal of Solid-state Circuits, vol. 30, no. 12, dec 1995, pp. 1502–1509

    Google Scholar 

  33. Yeu-Shen Jehng, Liang-Gee Chen, Tzi-Dar Chiueh: “An efficient and simple VLSI Tree architecture for motion estimation algorithms”, IEEE Transactions on Signal Processing, vol. 41, no. 2, feb 1993, pp. 889–900

    Google Scholar 

  34. Her-Ming Jong and Liang-Gee Chen and Tzi-Dar Chiueh: “Parallel Architectures for 3-Step Hierarchical Search Block-Matching Algorithm”, vol. 4, no. 4, aug. 1994, pp. 407–415

    Google Scholar 

  35. Hae-Kwan Jung, C-P Hong, J-S Choi, Y-H Ha: “A VLSI Architecture for the alternative subsampling-based blockmatching algorithm”, IEEE Transactions on Consumer Electronics, vol. 41, no. 2, may 1995, pp 239–347

    Google Scholar 

  36. T. Komarek, P. Pirsch: “Array Architectures for blockmatching algorithms”, IEEE Trans. Circuits and SystemsVol. 36, No. 10, Oct. 1989, pp 1301–1308

    Article  Google Scholar 

  37. T. Komarek: “VLSI-Architekturen für Displacementschätzverfahren auf der Basis von Blockmatching-Algorithmen”, Dissertation, Hannover, 1993, VDI Verlag (in german].

    Google Scholar 

  38. Kuhn P., Stechele W.: “VLSI architecture for variable block size motion estimation with luminance correction”, vol. SPIE 3162 Advanced Signal Processing: Algorithms, Architectures and Implementations, San Diego, July 1997, pp. 497–508

    Google Scholar 

  39. Kuhn, P., Weisgerber, A., Poppenwimmer, R. Stechele, W.: “A flexible VLSI architecture for Variable Block Size Segment Matching with Luminance Correction”, ASAP 97, IEEE International Conference on Application-specific Systems, Architectures and Processors, Zurich, July 14–16, 1997

    Google Scholar 

  40. Kuhn P., Eiermann M., Stechele W.: “A flexible Segment Matching Processor for Motion and Illumination Estimation”, PCS 97, International Picture Coding Symposium, Berlin, Sept. 1997

    Google Scholar 

  41. Kuhn, P., Weisgerber A., Poppenwimmer R., Stechele W.: “Eine flexible Architektur für moderne Verfahren der Bewegungsschätzung”, 7. Dortmunder Fernsehseminar, Dortmund, Sept. 1997 (in german].

    Google Scholar 

  42. Kuhn, P., Eiermann M., Weisgerber W., Poppenwimmer R., Stechele, W.:,,VLSI Implementation of Mean-Corrected Block-Matching Motion Estimation of Partial Quadtrees“, VLBV 97, Workshop for Very Low Bitrate Video Coding, Linköping, Sweden, July 1997

    Google Scholar 

  43. Jinsuk Kwak, Jinwoong Kim, Kichul Kim: “A field and Frame-based Motion Estimator with a very flexible search range”, SPIE Proceedings Vol. 2727, Visual Communications and Image Processing, mar. 1996, p394–402

    Google Scholar 

  44. Yeong-Kang Lai, Liang-Gee Chen, Yung-Pin Lee: “A flexible Data-interlacing Architecture for full-search block-matching algorithm”, IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 97), Zurich, Switzerland, July 14–16, jul. 1997, pp. 96–104

    Google Scholar 

  45. Yeong-Kang Lai, Liang-Gee Chen, Tsung-Han Tsai, Po-Cheng Wu: “A flexible high-throughput VLSI architecture with 2-D data-reuse for full-search motion estimation”, IEEE ICIP 97, 1997, p11–01

    Google Scholar 

  46. Prasad Lakamsani: “An architecture for enhanced three step search generalized for hierarchical motion estimation algorithms”, IEEE Trans. on Consumer Electronics, vol. 43, no. 2, may 1997, pp. 221–227

    Google Scholar 

  47. S. Lee and S.-I. Chae: “Motion Estimation algorithm using low resolution quantization”, IEE Electronic Letters, vol. 32, no. 7, 28 th. Mar. 1996, pp 647–648

    Google Scholar 

  48. Chen-Yi Lee, Shih-Chou Juan, Wen-Wei Yang: “A parallel Bit-Level Maximum/Minimum Selector for Digital and Video Signal Processing”, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 41, no. 10, oct. 1994, pp. 693–695

    Google Scholar 

  49. Jong Hwa Lee, Myeong Kyoo Doh, Choong Woong Lee: “A VLSI Chip for Motion Estimation of HDTV dignals”, IEEE Trans on Consumer Electronics, vol. 40, no. 2, may 1994, pp. 154–160

    Google Scholar 

  50. Chen-Yi Lee, Mel-Cheng Lu: “An efficient VLSI architecture for full-search block matching algorithms”, Journal of VLSI Signal Processing, vol. 15, pp. 272–282

    Google Scholar 

  51. Thinh M. Le, M. Snelgrove, S. Panchanatan: “Fast motion estimation using feature extraction and XOR operations”, SPIE 3311 MHA Multimedia Hardware Architectures, San Jose, 1998, pp 108–118

    Google Scholar 

  52. Xiaoming Li, Cesar Gonzales: “A locally quadratic model of the motion estimation error criterion function and its application to subpixel interpolations”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 1, feb. 1996

    Google Scholar 

  53. Hong-Dar Lin and Alex Anesko and Brian Petryna: “A 14-Gops Programmable Motion Estimator For H.26X Video Coding”, IEEE Journal of Solid State Circuits, vol. 31, no. 11, Nov. 1996, pp. 1096–1075

    Google Scholar 

  54. H.-D. Lin, A. Anesko, B. Petryna: “A 14 GOPS Programmable Motion Estimator for H.26X Vid- eo Coding”, 1996 IEEE International Solid-State Circuits Conference (ISSCC), 1996, p. 246–247

    Google Scholar 

  55. Mei-Cheng Lu, Chen-Yi Lee: “Semi-Systolic Array Based Motion Estimation Processor Design”, ICASSP 95, vol. 5, 1995, pp. 3299

    Google Scholar 

  56. Teresa H.-Y. Meng, Andy C. Hung: “Parallel Array Architectures for Motion Estimation”, ASAP 91, Proc. of the International Conference on Application Specific Array Processors, Sept. 2–4, 1991, Barcelona, Spain, pp. 214–235

    Google Scholar 

  57. Marcelo M. Mizuki and Ujjaval Y. Desai and Ichiro Masaki and Anantha Chandrakasan: “A binary block matching architecture with reduced power consumption and silicon area requirement”, ICASSP 96, 1996, p3249

    Google Scholar 

  58. Vasily G. Moshnyaga, Keikichi Tamaru: “A memory efficient array architecture for real-time motion estimation”, IPPS 97, Proceedings of the 11 th International Parallel processing Symposium, April 1–5, 1997, Geneva, Switzerland, CDROM

    Google Scholar 

  59. Vasily G. Moshnyaga, Keikichi Tamaru: “A memory array architecture for full-search block matching algorithm”, ICASSP 97, p. 4109–4112

    Google Scholar 

  60. Seung Hyun Nam, Jong Seob Back, Moon Key Lee: “Flexible VLSI Architecture of Full Search motion estimation for video applications”, IEEE Trans. on Consumer Electronics, vol. 40, no. 2, may 1994, p176–184

    Google Scholar 

  61. Seung Hyun, Moon Key Lee: “Flexible VLSI Architecture for Motion Estimation for Video Image Compression”, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, no. 6, jun 1996, p. 467–470

    Google Scholar 

  62. Balas, Natarajan and Bhaskaran Vasudev and Konstantinos Konstantinides: “Low-complexity Algorithm and Architecture for Block-based Motion Estimation via one-bit transforms”, ICASSP 96, 1996, p. 3245

    Google Scholar 

  63. Balas Natarajan, Vasudev Bhaskaran, Konstantinos Konstantinides: “Low-Complexity Block-based motion estimation via One-Bit Transforms”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 7, no. 4, Aug. 1997, p 702

    Article  Google Scholar 

  64. Yasushi Ooi, O. Ohnishi, Y. Yokohama, Y. Katayama, M. Mizuno, M. Yamashina, H. Takano, N. Hayashi, 1. Tamitani: “An MPEG-2 Encoder Architecture based on a single-chip dedicated LSI with a control MPU”, ICASSP 97, 1997, p. 599

    Google Scholar 

  65. Eiji Ogura, Yuuichirou lkenaga, Y. lida. Y. Hosoya, M. Takashima, K. Yamashita: “A cost efective motion estimation processor LSI using a simple and efficient algorithm’, IEEE Transactions on Consumer Electronics, vol. 41, no. 3, Aug. 1995, p690–697

    Article  Google Scholar 

  66. Sung Bum Pan, Seung Soo Chae, Rae-Hong Park: “VLSI architectures for block matching algorithms using systolic arrays”, IEEE Transactions on Circuits and Systems for video technology, vol. 6, no. 1, feb. 1996, p67–73

    Google Scholar 

  67. Peter Pirsch, Nicolas Demassieux, Wmfned Gehrke: “VLSI Architectures for Video Compression–A Survey”, Proceedings of the IEEE, vol$183, no. 2, feb. 1995, p. 220–246

    Google Scholar 

  68. Alain Pirson, Fathy Yassa, Philippe Paul, Barth Canfield, Fnedrich Rominger, Andreas Graf, Detlef Teichner: “A Programmable Motion Estimation Processor for Full Search Block Matching”, ICASSP 95, vol. 5, 1995, p. 32–83

    Google Scholar 

  69. C.V. Reventlow, M. Talmi, S. Wolf, M. Ernst, K. Mueller, C. Stoffers: “System Considerations and the System Level Design of a Chip Set for Real-Time TV and HDTV motion estimation”, Journal of VLSI processing, Kluwer Academic Publishers, vol. 5, 1993, p. 237–248

    Article  Google Scholar 

  70. J. Rosseel, F. Catthoor, H. De Man: “The systematic design of motion estimation array architecture”, ASAP 91, Proc. of the International Conference on Application Specific Array Processors (ASAP 91), Sept. 2–4, 1991, Barcelona, SpainSept. 1991, p. 40–54

    Google Scholar 

  71. Arindam Saha, Raja Neogi: “Parallel programmable algorithm and architecture for real-time motion estimation of various video applications”, IEEE Trans. on Consumer Electronics, vol. 41, no. 4, Nov. 1995, p 1069–1079

    Article  Google Scholar 

  72. Sangloong Kim, Yonggil Kim, Kangbin Yim, Hwaja Chung, Kyunghee Choi, Yongdeak Kim, Gihyun Jung: “A fast motion estimator for real-time systems”, IEEE Trans. on Consumer Electronics, vol. 43, no. 1, Feb. 1997, pp. 24–33

    Article  Google Scholar 

  73. SGS-Thomson Microelectronics: “STi 3220 Motion Estimation Processor”, datasheet, January 1994, 24p

    Google Scholar 

  74. Kazuhito Suguri et al: “A Real-Time motion Estimation and Compensation LSI with Wide Search Range for MPEG2 Video Coding”, IEEE Journal of Solid State Circuits, vol. 31, no. 11, Nov. 1996, p. 1733–1741

    Article  Google Scholar 

  75. Ming-Ting Sun: “Algorithms and VLSI architectures for motion estimation”, LSI Implementations for Image Communications, P. Pirsch ( Editor ), Elsevier Science Publishers B.V., 1993, pp 251–282

    Google Scholar 

  76. Shin-ichi Uramotom A. Takabatake, M. Suzuki, H. Sakurai, M. Yoshimoto: “A Half-Pel Precision Motion Estimation Processor for NTSC-Resolution Video”, IEICE Trans. Electronics, vol. E77-C, no. 12, Dec. 1994, pp. 1930–1936

    Google Scholar 

  77. Luc De Vos, M. Stegherr: “Paramaterizable VLSI architectures for the full-search block-matching algorithm,” IEEE Trans. Circuits Syst., Vol. 36, Oct. 1989, p 1309–1316

    Article  Google Scholar 

  78. Luc De Vos: “VLSI-architectures for the hierarchical block-matching algorithm for HDTV applications”, SPIE Vol. 1360 Visual Communications and Image Processing, 1990, pp. 398–409

    Google Scholar 

  79. Luc de Vos: “Dedizierte VLSI-Architekturen für Block Matching Algorithmen”, VDI-Verlag, Düsseldorf 1994, Reihe 10 Informatik/Kommunikationstechnik, Nr. 326 (dissertation, in german), 171 p

    Google Scholar 

  80. Luc De Vos, M. Schöbinger: “VLSI Architecture for a Flexible Block Matching Processor”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 5, No. 5, October 1995, pp. 417–428

    Article  Google Scholar 

  81. Bor-Min Wang and Jui-Cheng and Shyang Chang: “Zero Waiting-Cycle Hierarchical Block Matching Algorithm and its Array Architectures”, IEEE Trans. on Circuits and Systems for Video Technology, vol. 4, no. 1, Feb. 1994, p. 18–27

    Article  Google Scholar 

  82. Chin-Liang Wang, Ker-Min Chen, Jin-Min Hsiung: “A High-Throughput, Flexible VLSI Architecture for Motion Estimation”, ICASSP 95, 1995, pp. 32–95

    Google Scholar 

  83. W. Li, E. Salan: “Succesive elimination algorithm for motion estimation”, IEEE Trans. Image Processing, vol. 4 pp 105–107, Jan 1995, pp 105–107

    Google Scholar 

  84. Chen-Mie Wu, Ding-Kuen Yeh: “A VLSI Motion Estimator for Video image compression”, IEEE Trans. on Consumer Electronics, vol. 39, no. 4, Nov. 1993, pp. 837–846

    Article  Google Scholar 

  85. An-Yeu Wu, K.J. Ray Liu: “Algorithm-Based Low-Power Transform Coding Architectures”, ICASSP 95, vol. 5, 1995, p. 3267–3272

    Google Scholar 

  86. Xiaobing Lee, Ya-Qin Zhang: “A fast hierarchical Motion-Compensation Scheme for Video Coding using Block-feature Matching”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 6, Dec. 1996, pp 627–635

    Article  Google Scholar 

  87. Kun-Min Yang, Ming-Ting Sun, Lancelot Wu: “A family of VLSI designs for the motion compensation block-matching algorithm”, IEEE Transactions on circuits and systems, vol. 36, no. 10, Oct. 1989, pp. 1317–1325

    Article  Google Scholar 

  88. Yuan-Hau Yeh, Chen-Yi Lee: “Buffer Size Optimization for Full-Search Block Matching Algorithms”, IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 97), Zurich,Switzerland, July 14–16, 1997, pp. 76–85

    Google Scholar 

  89. Hangu Yeo and Yu Hen Hu: “A Novel Modular Systolic Array Architecture for Full-Search Block Matching Motion Estimation”, IEEE Transactions on Circuits and Systems for Video technology, vol. 5, no. 5, oct. 1995, pp. 407–416

    Google Scholar 

  90. Hangu Yeo, Yu Hen Hu: “A Novel Modular Systolic Array Architecture for Full-Search Block Matching Motion Estimation”, ICASSP 95, vol. 5, 1995, p 3303

    Google Scholar 

  91. Hangu Yeo, Yu Hen Hu: “A high-throughput modular architecture for three-step search block matching motion estimation”, ICASSP 96, 1996, p. 2305

    Google Scholar 

Adress Generation Units

  1. Ben Cohen: “VHDL: Answers to Frequently Asked Questions”, Kluwer, Academic Publishers, Boston, Dordrecht, London, 1997

    Google Scholar 

  2. Reiner W. Hartenstein, Juergen Becker, Michael Herz, Ulrich Nageldinger: “A novel sequencer hardware for application specific computing”, IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 97), Zurich, Switzerland, July 14–16, 1997, pp 392–401

    Article  Google Scholar 

  3. D.M. Grant, J. van Meerbergen, P.E.R. Lippens: “Optimization of Address Generator Hard- ware”, Proceedings of the 5 th ACM/ IEEE Europ. Design and Test Conference, pp 325–329, 1994

    Google Scholar 

  4. Kazukuni Kitagaki, Takeshi Oto, Tatsuhiko Demura, Yoshitsugu Araki, and Tomoji Takad: “A new address generation unit architecture for video signal processing”, SPIE Vol. 1606 Visual Communications and Image Processing 91: Image Processing, pp 891–900

    Google Scholar 

  5. Clifford Liem: “Retargetable Compilers for Embedded Core Processors”, Kluwer Academic Publishers, Boston, Dordrecht, London, 1997

    Google Scholar 

  6. Miguel Miranda, Martin Kaspar, Francky Catthor, Hugo De Man: “Architectural Exploitation and Optimization for Counter Based Hardware Address Generation”, European Design and Test Conference 97, Paris, France, March 17–20, 1997, pp 293–298

    Article  Google Scholar 

  7. Mark Nelson: “Datenkomprimierung - Effiziente Algorithmen in C”, Heinz Heise Verlag, Hannover, 1993, pp 475

    Google Scholar 

  8. Ashok Sudarsanam, Stan Liao, Srimvas Devadas: “Analysis and Evaluation of Address Arithmetic Capabilities in Custom DSP Architectures”, IEEE/ACM Design Automation Conference ( DAC ), Anaheim, CA, 1997, pp 287–292

    Google Scholar 

  9. Synopsys: “VHDL Compiler Reference Manual”, Document Order Number: 1US01–10430, WWW: http://www.synopsys.com

  10. Bernhard Wess, Martin Gotschlich: “Optimierungstechniken für Adressrecheneinheiten in DSPs”, DSP Deutschland 97 - Grundlagen, Architekturen, Tools, Applikationen, 30.9.-1.10.97, Munich, Germany (in german].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kuhn, P. (1999). Design Space Motion Estimation Architectures. In: Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion Estimation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4474-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4474-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5088-8

  • Online ISBN: 978-1-4757-4474-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics