Skip to main content

Lagrangian Dispersion Models

  • Chapter

Abstract

As introduced in Chapter 6, Lagrangian models provide an alternative method for simulating atmospheric diffusion. They are called Lagrangian because they describe fluid elements that follow the instantaneous flow. The “Lagrangian” term was initially used to distinguish the Lagrangian box models described in Section 8.2 from the Eulerian box models described in Section 6.4. In this case, the difference is manifest, since the Eulerian box does not move, while the Lagrangian box follows the average wind trajectory. The term has, however, been extended to describe all models in which plumes are broken up into “elements,” such as segments (see Section 7.7), puffs (see Section 7.8) or fictitious particles (see Section 8.3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baerentsen, J.H., and R. Berkovicz (1984): Monte Carlo simulation of plume dispersion in the convective boundary layer. Atmos. Environ., 18: 701–712.

    Article  Google Scholar 

  • Briggs, G.A. (1975): Plume rise predictions, in Lectures on Air Pollution and Environmental Impact Analyses. edited by D.A. Augen, Boston: American Meteorological Society.

    Google Scholar 

  • Briggs, G.A. (1983): Diffusion modeling with convective scaling. AMS specialty conference on Air Quality Modeling of the Urban Boundary Layer, Baltimore.

    Google Scholar 

  • Brusasca, G., G. Tinarelli, D. Anfossi, P. Zannetti (1987): Particle modeling simulation of atmospheric dispersion using the MC—LAGPAR package. Envir. Software, 2: 151–158.

    Article  Google Scholar 

  • Cogan, J.L. (1985): Monte Carlo simulations of buoyancy dispersion. Atmos. Environ., 19: 867–878.

    Article  Google Scholar 

  • Davis, R.E. (1982): On relating Eulerian and Lagrangian velocity statistics: Single particles in homogeneous flows. J. Fluid Mech., 114: 1–26.

    Article  Google Scholar 

  • Deardorff, J.W. (1974): Three—dimensional numerical study of the height and mean structure of a heated boundary layer. Boundary—Layer Meteor., 7: 81–106.

    Google Scholar 

  • Baas, A.F., H. van Dop, and F.T. Nieuwstadt (1986): An application of the Langevin equation for inhomogeneous conditions to dispersion in a convection boundary layer. Quarterly J. Roy. Meteor. Soc., 112: 165–180.

    Article  Google Scholar 

  • Drivas, P.J., M.W. Chan, and L.G. Wayne (1977): Validation of an improved photochemical air quality simulation model. Proceedings, AMS joint conference on Applications of Air Pollution Meteorology. Salt Lake City, Utah. November.

    Google Scholar 

  • Gifford, F.A. (1982): Horizontal diffusion in the atmosphere: Lagrangian—dynamical theory. Atmos. Environ., 16: 505–512.

    Article  Google Scholar 

  • Durbin, P.A. (1980): A stochastic model of two—particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech., 100: 279–302.

    Article  Google Scholar 

  • Gaffen, D. J., C. Benocci, and D. Olivari (1987): Numerical modeling of buoyancy dominated dispersal using a Lagrangian approach. Atmos. Environ., 21: 1285–1293.

    Google Scholar 

  • Gingold, R.A., and J.J. Monaghan (1982): Kernel estimates as a basis for general particle methods in hydrodynamics. J. Computational Phys., 46: 429–453.

    Article  Google Scholar 

  • Hall, C.D. (1975): The simulation of particle motion in the atmosphere by a numerical random—walk model. Quarterly J. Roy. Meteor. Soc., 101: 235–244.

    Article  Google Scholar 

  • Hanna, S.R. (1979): Some statistics of Lagrangian and Eulerian wind fluctuations. J. Appl. Meteor., 18: 518–525.

    Article  Google Scholar 

  • Hanna, S.R., G.A. Briggs, and R.P. Hosker, Jr. (1982): Handbook on Atmospheric Diffusion, edited by J.S. Smith, Washington, D.C.: Technical Information Center, U.S. Department of Energy.

    Google Scholar 

  • Hanna, S.R. (1981): Lagrangian and Eulerian time scale relations in the daytime boundary layer. J. Appl. Meteor., 20: 242–249.

    Article  Google Scholar 

  • Hockney, R.W., and J.W. Eastwood (1981): Computer Simulation Using Particles. New York: McGraw—Hill, Inc.

    Google Scholar 

  • Janicke, L. (1981): Particle simulation of inhomogeneous turbulent diffusion. Proceedings, 12th International Technical Meeting of the NATO CCMS. Palo Alto, California: Plenum Press.

    Google Scholar 

  • Lamb, R.G. (1978): A numerical simulation of dispersion from an elevated point source in the convective planetary boundary layer. Atmos. Environ., 12: 1297–1304.

    Article  Google Scholar 

  • Reid, J.D. (1979): Markov chain simulations of vertical dispersion in the neutral surface layer for surface and elevated releases. Boundary-Layer Meteor., 16: 3–22.

    Google Scholar 

  • Lamb, R.G., H. Hogo, and L.E. Reid (1979a): A Lagrangian Monte Carlo model of air pollutant transport, diffusion and removal processes. 4th AMS Symposium on Turbulence, Diffusion and Air Pollution. Reno, Nevada. January.

    Google Scholar 

  • Lamb, R.G., H. Hogo, and L.E. Reid (1979b): A Lagrangian approach to modeling air pollutant dispersion: Development and testing in the vicinity of a roadway. EPA Research Report EPA–600/4–79–023.

    Google Scholar 

  • Lamb, R.G. (1981): A scheme for simulating particle pair motions in turbulent fluid. J. Computational Phys., 39: 329–346.

    Article  Google Scholar 

  • Lange, R. (1978): ADPIC - A three-dimensional particle-in-cell model for the dispersal of atmospheric pollutants and its comparison to regional tracer studies. J. Appl. Meteor., 17: 320.

    Article  Google Scholar 

  • Legg, B.J., and M.R. Raupach (1982): Markov chain simulation of particle dispersion in in-homogeneous flows: The mean drift velocity induced by a gradient in Eulerian velocity variance. Boundary-Layer Meteor., 24: 3–13

    Article  Google Scholar 

  • Legg, B.J. (1983): Turbulent dispersion from an elevated line source: Markov chain simulations of concentration and flux profiles. Quarterly J. Roy. Meteor. Soc., 109: 645–660.

    Article  Google Scholar 

  • Lee, J.T., G.L. Stone, R.E. Lawson, Jr., and M. Shipman (1985): Monte Carlo simulation of two-particle relative diffusion using Eulerian Statistics. Los Alamos National Laboratory Document LA-UR-85–2008, Los Alamos, New Mexico.

    Google Scholar 

  • Ley, A.J. (1982): A random walk simulation of two-dimensional turbulent diffusion in the neutral surface layer. Atmos. Environ., 16: 2799–2808.

    Article  Google Scholar 

  • Ley, A.J., and D.J. Thomson (1983): A random walk model of dispersion in the diabatic surface layer. Quarterly J. Roy. Meteor. Soc., 109: 847–880.

    Google Scholar 

  • Lorimer, G.S. (1986): The kernel method for air quality modelling; I. Mathematical foundation. Atmos. Environ., 20: 1447–1452.

    Article  Google Scholar 

  • Lurmann, F.W., D.A. Gooden, and H.M. Collins, Eds. (1985): User’s guide to the PLMSTAR air quality simulation model. Environmental Research and Technology, Inc. Document M-2206–100, Newbury Park, California.

    Google Scholar 

  • Martinez, J.R., R.A. Nordsieck, and M.A. Hirschberg (1973): User’s guide to diffusion/kinetics (DIFKIN) code. General Research Corporation Final Report CR-2–273/1, prepared for the U.S. Environmental Protection Agency.

    Google Scholar 

  • Nieuwstadt, F.T., and H. van Dop, Eds. (1982): Atmospheric Turbulence and Air Pollution Modeling. Dordrecht, Holland: D. Reidel.

    Google Scholar 

  • Novikov, E.A. (1969): Appl. Math. Mech., 33: 887.

    Google Scholar 

  • Novikov, E.A. (1986): The Lagrangian-Eulerian probability relations and the random force method for nonhomogeneous turbulence. Phys. of Fluids, 29: 3907–3909.

    Article  Google Scholar 

  • Poreh, M., and J.E. Cermak (1984): Wind tunnel simulation of diffusion in a convective boundary layer. Proceedings, 29th Oholo Conference on Boundary Layer Structure-Modelling and Application to Air Pollution and Wind Energy. Israel. March.

    Google Scholar 

  • Rodriguez, D.J., G.D. Greenly, P.M. Gresho, R. Lange, B.S. Lawyer, L.A. Lawson, and H. Walker (1982): User’s guide to the MATHEW/ADPIC models. Lawrence Livermore National Laboratory Document UASG 82–16, University of California Atmospheric and Geophysical Sciences Division, Livermore, California.

    Google Scholar 

  • Sawford, B.L. (1983): The effect of Gaussian particle-pair distribution functions in the statistical theory of concentration fluctuations in homogeneous turbulence. Quarterly J. Roy. Meteor. Soc., 109: 339–354.

    Google Scholar 

  • Sawford, B.L. (1984): The basis for, and some limitations of, the Langevin equation in atmospheric relative dispersion modelling. Atmos. Environ., 11: 2405–2411.

    Google Scholar 

  • Sawford, B.L. (1985): Lagrangian simulation of concentration mean and fluctuation fields. J. Clim. Appl. Meteor., 24: 1152–1166.

    Article  Google Scholar 

  • Seinfeld, J.H. (1975): Air Pollution - Physical and Chemical Fundamentals. New York: McGraw-Hill.

    Google Scholar 

  • Smith, F.B. (1968): Conditioned particle motion in a homogeneous turbulent field. Atmos. Environ., 2: 491–508.

    Article  Google Scholar 

  • Stern, A.C., R.W. Boubel, D.B. Turner, and D.L. Fox (1984): Fundamentals of Air Pollution. Orlando, Florida: Academic Press.

    Google Scholar 

  • Taylor, G.I. (1921): Diffusion by continuous movements. Proceedings, London Math. Soc., 20: 196–211.

    Google Scholar 

  • Tran, K. (1981): User’s guide for photochemical trajectory model TRACE. Applied Modeling, Inc., Report 81/003. California.

    Google Scholar 

  • Thomson, D.J. (1984): Random walk modelling of diffusion in inhomogeneous turbulence. Quarterly J. Roy. Meteor. Soc., 110: 1107–1120.

    Article  Google Scholar 

  • Thomson, D.J. (1987): J. Fluid Mech., 180: 529.

    Article  Google Scholar 

  • Dop, H., F.T. Nieuwstadt, and J.C. Hunt (1985): Random walk models for particle dis- placements in inhomogeneous unsteady turbulent flows. Phys. of Fluids, 28: 1639–1653.

    Article  Google Scholar 

  • Willis, G.E., and J. W. Deardorff (1978): A laboratory study of dispersion from an elevated source within a modeled convective planetary boundary layer. Atmos. Environ., 12: 1305–1311.

    Article  Google Scholar 

  • Willis, G.E., and J. W. Deardorff (1981): A laboratory study of dispersion from a source in the middle of the convective mixed layer. Atmos. Environ., 15: 109–117.

    Article  Google Scholar 

  • Wilson, J.D., G. W. Thurtell, and G.E. Kidd (1981): Numerical simulation of particle trajectories in inhomogeneous turbulence; III. Comparison of predictions with experimental data for the atmospheric surface layer. Boundary-Layer Meteor., 12: 423–441.

    Article  Google Scholar 

  • Yamada, T., and S.S. Bunker (1988): Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. J. Appl. Meteor., 27: 562–578.

    Article  Google Scholar 

  • Yamamoto, S., M. Gamo, and Y. Osayuki (1982): Observational study of the fine structure of the convective atmospheric boundary layer. J. Meteor. Soc. of Japan, 60: 882–888.

    Google Scholar 

  • Zannetti, P. (1981): Some aspects of Monte Carlo type modeling of atmospheric turbulent diffusion. Preprints, Seventh AMS conference on Probability and Statistics in Atmospheric Sciences. Monterey, California. November, 1978.

    Google Scholar 

  • Zannetti, P., and N. Al-Madani (1983): Simulation of transformation, buoyancy and removal processes by Lagrangian particle methods. Proceedings, 14th international technical meeting on Air Pollution Modeling and its Application. Copenhagen, Denmark. September.

    Google Scholar 

  • Zannetti, P. (1984): New Monte Carlo scheme for simulating Lagrangian particle diffusion with wind shear effects. Appl. Math. Modelling, 8: 188–192.

    Article  Google Scholar 

  • Zannetti, P. (1986): Monte-Carlo simulation of auto-and cross-correlated turbulent velocity fluctuations (MC-LAGPAR II Model). Environ. Software, 1: 26–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zannetti, P. (1990). Lagrangian Dispersion Models. In: Air Pollution Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4465-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4465-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4467-5

  • Online ISBN: 978-1-4757-4465-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics