Eulerian Dispersion Models

  • Paolo Zannetti


Air pollution diffusion can be numerically simulated by several techniques, which are mainly divided into two categories:
  1. 1.

    Eulerian models

  2. 2.

    Lagrangian models



Large Eddy Simulation Planetary Boundary Layer Eddy Diffusivity Horizontal Diffusion Eulerian Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boris, J., and D.L. Book (1973): Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys., 12: 38 - 69.CrossRefGoogle Scholar
  2. Businger, J.A., and S.P. Ayra (1974): Heights of the mixed layer in the stable, stratified planetary boundary layer. Adv. Geophys., 18A: 73 - 92.CrossRefGoogle Scholar
  3. Calder, K.L. (1949): Eddy diffusion and evaporation in flow over aerodynamically smooth and rough surfaces: A treatment based on laboratory laws of turbulent flow with special reference to conditions in the lower atmosphere. Quart. J. Mech. Math., 2: 153.CrossRefGoogle Scholar
  4. Carras, J.N., and D.J. Williams (1984): Experimental studies of plume dispersion in convective conditions — 1. Atmos. Environ., 18: 135 - 144.CrossRefGoogle Scholar
  5. Chock, D.P., and A.M. Dunker (1983): A comparison of numerical methods for solving the advection equation. Atmos. Environ., 17 (1): 11 - 24.CrossRefGoogle Scholar
  6. Deardorff, J.W., and G.E. Willis (1974): Physical modeling of diffusion in the mixed layer. Proceedings, Symposium on Atmospheric Diffusion Air Pollution sponsored by the American Meteorological Society, Santa Barbara, California, September.Google Scholar
  7. Deardorff, J.W. (1974): Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteor., 7: 81 - 106.Google Scholar
  8. Demuth, C. (1978): A contribution to the analytical steady solution of the diffusion equation for line sources. Atmos. Environ., 12: 1255 - 1258.CrossRefGoogle Scholar
  9. Donaldson, C. duP. (1973): Construction of a dynamic model of the production of atmospheric turbulence and the dispersal of atmospheric pollutants. Proceedings, Workshop on Micrometeorology sponsored by the American Meteorological Society, Boston, pp. 313 - 392.Google Scholar
  10. Egan, B.A., and J.R. Mahoney (1972): Numerical modeling of advection and diffusion of urban area source pollutants. J. Appl. Meteor., 11: 312 - 322.CrossRefGoogle Scholar
  11. Enger, L. (1986): A higher order closure model applied to dispersion in a convective PBL. Atmos. Environ., 20: 879 - 894.CrossRefGoogle Scholar
  12. Gifford, F.A., and S.R. Hanna (1973): Modeling urban air pollution. Atmos. Environ., 7: 131 - 136.CrossRefGoogle Scholar
  13. Gifford, F.A. (1982): Horizontal diffusion in the atmosphere: a Lagrangian-dynamical theory. Atmos. Environ., 16: 505 - 512.CrossRefGoogle Scholar
  14. Hage, K.D., P.S. Brown, G. Arnason, S. Lazorick, and M. Levitz (1967): A computer program for the fall and dispersion of particles in the atmosphere. Sandia Corporation Report SCCR-67-2530, The Travelers Research Center, Inc.Google Scholar
  15. Hage, K.D., and H.W. Church (1967): A computer-programmed model for calculation of fall and dispersion of particles in the atmosphere. Proceedings, USAEC Meteor. Info. Meeting, Chalk River Nuclear Labs., 11-14 Sept. 1967, pp. 320-333. Atomic Energy of Canada, Ltd., Report AECL-2787.Google Scholar
  16. Hanna, S.R., et al. (1977): AMS Workshop on Stability Classification Schemes and Sigma Curves — Summary of Recommendations. J. Climate and Appl. Meteor., 58 (12): 1305 - 1309.Google Scholar
  17. Huang, C.H. (1979): A theory of dispersion in turbulent shear flow. Atmos. Environ., 13: 453 - 463.CrossRefGoogle Scholar
  18. Irwin, J.S. (1979): Estimating plume dispersion — A recommended generalized scheme. Presented at 4th Symposium on Turbulence and Diffusion, sponsored by the American Meteorological Society, Reno, Nevada.Google Scholar
  19. Jensen, N.O., and E.L. Petersen (1979): The box model and the acoustic sounder, a case study. Atmos. Environ., 13: 717 - 720.CrossRefGoogle Scholar
  20. Lamb, R.G. (1973): Note on application of K-theory to turbulent diffusion problems involving chemical reaction. Atmos. Environ., 7: 235.Google Scholar
  21. Lamb, R.G. (1978): A numerical simulation of dispersion from an elevated point source in the convection layer. Atmos. Environ., 12: 1297 - 1304.CrossRefGoogle Scholar
  22. Lamb, R.G., and D.R. Durran (1978): Eddy diffusivities derived from a numerical model of the convective planetary boundary layer. Nuovo Cimento, 1C: 1 - 17.CrossRefGoogle Scholar
  23. Lamb, R.G. (1983): A regional scale (1000 km) model of photochemical air pollution. Part I, Theoretical formulation. U.S. EPA Document EPA-600/3-83-035. Research Triangle Park, North Carolina.Google Scholar
  24. Lettau, H.H. (1970): Physical and meteorological basis for mathematical models of urban diffusion processes. Proceedings, Symposium on Multiple-Source Urban Diffusion Models. U.S. EPA Publication No. AP-86.Google Scholar
  25. Lewellen, W.S., and M.E. Teske (1976): Second-order closure modeling of diffusion in the atmospheric boundary layer. Boundary-Layer Meteor., 10: 69 - 90.CrossRefGoogle Scholar
  26. Lewellen, W.S., and R.I. Sykes (1983): Second-order closure model exercise for the Kincaid Power Plant Plume. Electric Power Research Institute Report EA-1616-9, Palo Alto, California.Google Scholar
  27. Liu, M.-K., D.C. Whitney, and P.M. Roth (1976): Effects of atmospheric parameters on the concentration of photochemical air pollutants. J. Appl. Meteor., 15: 829 - 835.CrossRefGoogle Scholar
  28. Longhetto, A., Ed. (1980): Atmospheric Planetary Boundary Layer Physics. New York, Elsevier.Google Scholar
  29. McRae, G.J., W.R. Goodin, and J.H. Seinfeld (1982): Mathematical modeling of photochemical air pollution. Environmental Quality Laboratory Report No. 18, Pasadena, California. Also see:Google Scholar
  30. McRae, G.J., W.R. Goodin, and J.H. Seinfeld (1982): Development of a second generation mathematical model for urban air pollution. I. Model formulation. Atmos. Environ., 16 (4): 679 - 696.CrossRefGoogle Scholar
  31. Myrup, L.O., and A.J. Ranzieri (1976): A consistent scheme for estimating diffusivities to be used in air quality models. California Department of Transportation Report CA—DOTTL-7169-3-76-32, Sacramento.Google Scholar
  32. Nieuwstadt, F.T., and H. van Dop, Eds. (1982): Atmospheric Turbulence and Air Pollution Modeling. Dordrecht, Holland: Reidel.Google Scholar
  33. Nieuwstadt, F.T., R.A. Brost, and T.L. van Stijn (1986): Decay of convective turbulence, a large eddy simulation. Proceedings, 199 Euromech meeting on Direct and Large Eddy Simulation of Turbulence, Munchen, 1985, Braunschweig/Weisbaden, Germany: Friedr. Vieweg Sohn.Google Scholar
  34. Nieuwstadt, F.T., and J.P. de Valk (1987): A large eddy simulation of buoyant and non-buoyant plume dispersion in the atmospheric boundary layer. Atmos. Environ., 21 (12): 2573 - 2587.CrossRefGoogle Scholar
  35. Orszag, S.A. (1971): Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representations. Stud. Appl. Math., 50: 293 - 326.Google Scholar
  36. Pasquill, F., and F.B. Smith (1983): Atmospheric Diffusion, Third Edition. New York: Halsted Press, John Wiley and Sons.Google Scholar
  37. Pepper, D.W., C.D. Kern, and P.E. Long, Jr. (1977): Modeling the dispersion of atmospheric pollution using cubic splines and Chapeau functions. Atmos. Environ., 13: 223 - 237.Google Scholar
  38. Reiquam, H. (1968): Atmos. Environ., 4: 233.Google Scholar
  39. Richtmyer, R.D., and K.W. Morton (1967): Difference Methods for Initial—Value Problems. New York: Interscience Publications, John Wiley Sons.Google Scholar
  40. Rounds, W. (1955): Solutions of the two—dimensional diffusion equation. Trans. Am. Geophys. Union, 36: 395.CrossRefGoogle Scholar
  41. Runca, E., and F. Sardei (1975): Numerical treatment of the dependent advection and diffusion of air pollutants. Atmos. Environ., 9: 69 - 80.CrossRefGoogle Scholar
  42. Runca, E. (1977): Transport and diffusion of air pollutants from a point source. Proceedings, IFIP Working Conference on Modeling and Simulation of Land, Air and Water Resource System, Ghent, The Netherlands.Google Scholar
  43. Schere, K.L. (1983): An evaluation of several numerical advection schemes. Atmos. Environ., 17: 1897 - 1907.CrossRefGoogle Scholar
  44. Sehmel, G. (1980): Particle and gas dry deposition: A review. Atmos. Environ., 14: 983.CrossRefGoogle Scholar
  45. Seinfeld, J.H. (1986): Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley Sons.Google Scholar
  46. Shir, C.C. (1973): A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer. J. Atmos. Sci., 30: 1327 - 1339.CrossRefGoogle Scholar
  47. Shir, C.C., and L.J. Shieh (1974): A generalized urban air pollution model and its application to the study of SO2 distributions in the St. Louis metropolitan area. J. Appl. Meteor., 13: 185 - 204.CrossRefGoogle Scholar
  48. Smith, F.B. (1957): The diffusion of smoke from a continuous elevated point source into a turbulent atmosphere. J. Fluid Mech., 2: 49.CrossRefGoogle Scholar
  49. Stern, A.C., Ed. (1976): Air Pollution. 3rd Edition, Volume I. New York: Academic Press.Google Scholar
  50. Sykes, R.I., W.S. Lewellen, S.F. Parker, and D.S. Henn (1989a): A hierarchy of dynamic plume models incorporating uncertainty. Volume 3: Second—order closure integrated model plume (SCIMP). A.R.A.P. Division of California Research Technology, Inc., Final Report EA-1616-28, Vol. 3, Princeton, New Jersey.Google Scholar
  51. Sykes, R.I., W.S. Lewellen, S.F. Parker, and D.S. Henn (1989b): A hierarchy of dynamic plume models incorporating uncertainty. Volume 4: Second—order closure integrated puff. A.R.A.P. Division of California Research Technology, Inc., Final Report EA-6095, Vol. 4, Princeton, New Jersey.Google Scholar
  52. Taylor, G.I. (1921): Diffusion by continuous movements. Proceedings, London Math. Soc., 20: 196 - 211.Google Scholar
  53. Tirabassi, T., M. Tagliazucca, and P. Zannetti (1986): KAPPA—G, a non—Gaussian plume dispersion model: Description and evaluation against tracer measurements. JAPCA, 36: 592 - 596.Google Scholar
  54. Ulbrick, E.A. (1968): Socio—Encon. Plan. Sci., 1: 423.Google Scholar
  55. Venkatram, A. (1978): An examination of box models for air quality simulation. Atmos. Environ., 12: 2243 - 2249.CrossRefGoogle Scholar
  56. van Haren, L., and F.T. Nieuwstadt (1989): The behavior of passive and buoyant plumes in a convective boundary layer, as simulated with a large—eddy model. J. Appl. Meteor., 28: 818.CrossRefGoogle Scholar
  57. Willis, G.E., and J.W. Deardorff (1976): A laboratory model of diffusion into the convection planetary boundary layer. Quart. J. Royal Meteor. Soc., 102: 427 - 445.CrossRefGoogle Scholar
  58. Willis, G.E., and J.W. Deardorff (1981): A laboratory study of dispersion from a source in the middle of the convectively mixed layer. Atmos. Environ., 15: 109 - 117.CrossRefGoogle Scholar
  59. Willis, G.E., and J.W. Deardorff (1983): On plume rise within a convective boundary layer. Atmos. Environ., 17: 2935 - 2447.Google Scholar
  60. Yeh, G.T., and C.H. Huang (1975): Three—dimensional air pollutant modeling in the lower atmosphere. Boundary—Layer Meteor., 9: 381.Google Scholar
  61. Zalesak, S.T. (1979): Fully multidimensional flux—corrected transport algorithms for fluids. J. Comput. Phys., 31: 335 - 362.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations