In most cases, pollutants injected into ambient air possess a higher temperature than the surrounding air. Most industrial pollutants, moreover, are emitted from smokestacks or chimneys and therefore possess an initial vertical momentum. Both factors (thermal buoyancy and vertical momentum) contribute to increasing the average height of the plume above that of the smokestack. This process terminates when the plume’s initial buoyancy is lost by mixing with ambient air.


Buoyant Plume Partial Penetration Plume Rise Downwind Distance Plume Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anfossi, D., G. Bonino, F. Bossa, and R. Richiardone (1978): Plume rise from multiple sources: A new model. Atmos. Environ., 12: 1821–1826.CrossRefGoogle Scholar
  2. Anfossi, D., (1985): Analysis of plume rise data from five TVA steam plants. J. Climate and Appl. Meteor., 24 (11): 1225–1236.CrossRefGoogle Scholar
  3. Bjorklund, J.R., and J.F. Bowers (1982): User’s instruction for the SHORTZ and LONGZ computer programs, Volumes I and II. EPA Document EPA–903/9–82–004A and B, U.S. EPA, Middle Atlantic Region I II, Philadelphia, Pennsylvania.Google Scholar
  4. Briggs, G.A. (1969): Plume rise. AEC Crit. Rev. Ser., TID-25075. U.S. At. Energy Comm., Div. Tech. Inform. Ext., Oak Ridge, Tennessee.Google Scholar
  5. Briggs, G.A. (1972): Discussion of chimney plumes in neutral and stable surroundings. Atmos. Environ., 6: 507–510.CrossRefGoogle Scholar
  6. Briggs, G.A. (1975): Plume rise predictions. Lectures on Air Pollution and Environmental Impact Analyses, Workshop Proceedings, Boston, Massachusetts. September 29–October 3. pp. 59–111, American Meteorological Society, Boston, Massachusetts.Google Scholar
  7. Briggs, G.A. (1984): Plume rise and buoyancy effects. In Atmospheric Science and Power Production, edited by D. Randerson. U.S. Department of Energy Document DOE/ TIC-27601 (DE84005177).Google Scholar
  8. Bringfelt, B. (1969): Atmos. Environ., 3: 609.CrossRefGoogle Scholar
  9. Brummage, K.G. (1966): The calculation of atmospheric dispersion from a stack. Stichting CONCAWE, The Hague, The Netherlands.Google Scholar
  10. Calder, K.L. (1949): Eddy diffusion and evaporation in flow over aerodynamically smooth and rough surfaces: A treatment based on laboratory laws of turbulent flow with special reference to conditions in the lower atmosphere. Q.J. Mech. Math., 2: 153.CrossRefGoogle Scholar
  11. Carras, J.N., and D.J. Williams (1984): Experimental studies of plume dispersion in convective conditions–1. Atmos. Environ., 18: 135–144.CrossRefGoogle Scholar
  12. Carpenter, S.B., T.L. Montgomery, J.M. Leavitt, W.C. Colbaugh, and F.W. Thomas (1971): JAPCA, 21: 491.Google Scholar
  13. Fay, J.A., M. Escudier, and D.P. Hoult (1970): JAPCA, 20: 391.Google Scholar
  14. Glendening, J.W., J.A. Businger, and R.J. Farber (1984): Improving plume rise prediction accuracy for stable atmospheres with complex vertical structure. JAPCA, 34: 1128–1133.Google Scholar
  15. Golay, M.W. (1982): Numerical modeling of buoyant plumes in a turbulent, stratified atmosphere. Atmos. Environ., 16: 2373–2381.CrossRefGoogle Scholar
  16. Hanna, S.R. (1972): Rise and condensation of large cooling tower plumes. J. Appl. Meteor., 11: 793–799.CrossRefGoogle Scholar
  17. Hanna, S.R., G.A. Briggs, R.P. Hosker, Jr. (1982): Handbook on atmospheric diffusion. U.S. Department of Energy, Office of Health and Environmental Research Document DOE/ TIC-11223.Google Scholar
  18. Henderson-Sellers, B., and S.E. Allen (1985): Verification of the plume rise/dispersion model USPR: Plume rise for single stack emissions. Ecological Modelling, 30: 209–277.CrossRefGoogle Scholar
  19. Henderson-Sellers, B., (1987): Modeling of plume rise and dispersion - The University of Salford Model: USPR. Lecture Notes in Engineering, edited by C.A. Brebbia and S.A. Orszag. Berlin: Springer-Verlag.Google Scholar
  20. Holland, J.Z. (1953): Meteorology survey of the Oak Ridge area. ORO-99. U.S. At. Energy Comm., Oak Ridge, Tennessee.Google Scholar
  21. Manins, P.C. (1979): Partial penetration of an elevated inversion layer by chimney plumes. Atmos. Environ., 13: 733–741.CrossRefGoogle Scholar
  22. Nieuwstadt, F.T., and J.P de Valk (1987): A large-eddy simulation of buoyant and non-buoyant plume dispersion in the atmospheric boundary layer. Atmos. Environ., 21: 2573–2587.CrossRefGoogle Scholar
  23. Pasquill, F., and F.B. Smith (1983): Atmospheric Diffusion, Third Edition. Chichester, England: Ellis Horwood Ltd.Google Scholar
  24. Schatzmann, M. (1979): An integral model of plume rise. Atmos. Environ., 13: 721–731.CrossRefGoogle Scholar
  25. Schatzmann, M., and A.J. Policastro (1984): An advanced integral model for cooling tower plume dispersion. Atmos. Environ., 18: 663–674.CrossRefGoogle Scholar
  26. Smith, F.B. (1957): The diffusion of smoke from a continuous elevated point source into a turbulent atmosphere. J. Fluid Mech., 2: 49.CrossRefGoogle Scholar
  27. Stern, A.C., Ed. (1976): Air Pollution. 3rd Edition, Volume I. New York: Academic Press.Google Scholar
  28. Stuhmiller, J. (1974): Development and validation of a two-variable turbulence model. Science Applications, Inc., Report SAI-74–509-LJ, La Jolla, California.Google Scholar
  29. Sutherland, V.C., and T.C. Spangler (1980): Comparison of calculated and observed plume rise heights for scrubbed and nonscrubbed buoyant plumes. Preprints, Second Joint Conference on Applications of Air Pollution Meteorology, New Orleans, American Meteorological Society, pp. 129–132.Google Scholar
  30. Sykes, R.I., W.S. Lewellen, S.F. Parker, and D.S. Henn (1989): A hierarchy of dynamic plume models incorporating uncertainty. Vol. 2: Stack exhaust model (SEM). A.R.A.P. Division of California Research Technology, Inc., Final Report EA-6095, Vol. 2, Princeton, New Jersey.Google Scholar
  31. Turner, D.B. (1985): Proposed pragmatic methods for estimating plume rise and plume penetration through atmospheric layers. Atmos. Environ., 19: 1215–1218.CrossRefGoogle Scholar
  32. van Haren, L., and F.T. Nieuwstadt (1989): The behavior of passive and buoyant plumes in a convective boundary layer, as simulated with a large-eddy model. J. Appl. Meteor., 28: 818.CrossRefGoogle Scholar
  33. Weil, J.C. (1974): The rise of moist, buoyant plumes. J. Appl. Meteor., 13: 435–443.CrossRefGoogle Scholar
  34. Wigley, T.M., and P.R. Slawson (1975): The effect of atmospheric conditions on the length of visible cooling tower plumes. Atmos. Environ., 9: 437–445.CrossRefGoogle Scholar
  35. Zannetti, P., G. Carboni, R. Lewis, and L. Matamala (1986): AVACTA II - User’s Guide. AeroVironment Inc. Document AV-R-86/530.Google Scholar
  36. Zannetti, P., and N. Al-Madani (1983a): Numerical simulations of Lagrangian particle diffusion by Monte-Carlo techniques. VIth World Congress on Air Quality (IUAPPA), Paris, France, May 1983.Google Scholar
  37. Zannetti, P., and N. Al-Madani (1983b): Simulation of transformation, buoyancy and removal processes by Lagrangian particle methods. Fourteenth ITM Meeting on Air Pollution Modeling and Its Application. Copenhagen, Denmark, September 1983.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations