Skip to main content
  • 650 Accesses

Abstract

In most cases, pollutants injected into ambient air possess a higher temperature than the surrounding air. Most industrial pollutants, moreover, are emitted from smokestacks or chimneys and therefore possess an initial vertical momentum. Both factors (thermal buoyancy and vertical momentum) contribute to increasing the average height of the plume above that of the smokestack. This process terminates when the plume’s initial buoyancy is lost by mixing with ambient air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfossi, D., G. Bonino, F. Bossa, and R. Richiardone (1978): Plume rise from multiple sources: A new model. Atmos. Environ., 12: 1821–1826.

    Article  Google Scholar 

  • Anfossi, D., (1985): Analysis of plume rise data from five TVA steam plants. J. Climate and Appl. Meteor., 24 (11): 1225–1236.

    Article  Google Scholar 

  • Bjorklund, J.R., and J.F. Bowers (1982): User’s instruction for the SHORTZ and LONGZ computer programs, Volumes I and II. EPA Document EPA–903/9–82–004A and B, U.S. EPA, Middle Atlantic Region I II, Philadelphia, Pennsylvania.

    Google Scholar 

  • Briggs, G.A. (1969): Plume rise. AEC Crit. Rev. Ser., TID-25075. U.S. At. Energy Comm., Div. Tech. Inform. Ext., Oak Ridge, Tennessee.

    Google Scholar 

  • Briggs, G.A. (1972): Discussion of chimney plumes in neutral and stable surroundings. Atmos. Environ., 6: 507–510.

    Article  Google Scholar 

  • Briggs, G.A. (1975): Plume rise predictions. Lectures on Air Pollution and Environmental Impact Analyses, Workshop Proceedings, Boston, Massachusetts. September 29–October 3. pp. 59–111, American Meteorological Society, Boston, Massachusetts.

    Google Scholar 

  • Briggs, G.A. (1984): Plume rise and buoyancy effects. In Atmospheric Science and Power Production, edited by D. Randerson. U.S. Department of Energy Document DOE/ TIC-27601 (DE84005177).

    Google Scholar 

  • Bringfelt, B. (1969): Atmos. Environ., 3: 609.

    Article  Google Scholar 

  • Brummage, K.G. (1966): The calculation of atmospheric dispersion from a stack. Stichting CONCAWE, The Hague, The Netherlands.

    Google Scholar 

  • Calder, K.L. (1949): Eddy diffusion and evaporation in flow over aerodynamically smooth and rough surfaces: A treatment based on laboratory laws of turbulent flow with special reference to conditions in the lower atmosphere. Q.J. Mech. Math., 2: 153.

    Article  Google Scholar 

  • Carras, J.N., and D.J. Williams (1984): Experimental studies of plume dispersion in convective conditions–1. Atmos. Environ., 18: 135–144.

    Article  Google Scholar 

  • Carpenter, S.B., T.L. Montgomery, J.M. Leavitt, W.C. Colbaugh, and F.W. Thomas (1971): JAPCA, 21: 491.

    Google Scholar 

  • Fay, J.A., M. Escudier, and D.P. Hoult (1970): JAPCA, 20: 391.

    Google Scholar 

  • Glendening, J.W., J.A. Businger, and R.J. Farber (1984): Improving plume rise prediction accuracy for stable atmospheres with complex vertical structure. JAPCA, 34: 1128–1133.

    Google Scholar 

  • Golay, M.W. (1982): Numerical modeling of buoyant plumes in a turbulent, stratified atmosphere. Atmos. Environ., 16: 2373–2381.

    Article  Google Scholar 

  • Hanna, S.R. (1972): Rise and condensation of large cooling tower plumes. J. Appl. Meteor., 11: 793–799.

    Article  Google Scholar 

  • Hanna, S.R., G.A. Briggs, R.P. Hosker, Jr. (1982): Handbook on atmospheric diffusion. U.S. Department of Energy, Office of Health and Environmental Research Document DOE/ TIC-11223.

    Google Scholar 

  • Henderson-Sellers, B., and S.E. Allen (1985): Verification of the plume rise/dispersion model USPR: Plume rise for single stack emissions. Ecological Modelling, 30: 209–277.

    Article  Google Scholar 

  • Henderson-Sellers, B., (1987): Modeling of plume rise and dispersion - The University of Salford Model: USPR. Lecture Notes in Engineering, edited by C.A. Brebbia and S.A. Orszag. Berlin: Springer-Verlag.

    Google Scholar 

  • Holland, J.Z. (1953): Meteorology survey of the Oak Ridge area. ORO-99. U.S. At. Energy Comm., Oak Ridge, Tennessee.

    Google Scholar 

  • Manins, P.C. (1979): Partial penetration of an elevated inversion layer by chimney plumes. Atmos. Environ., 13: 733–741.

    Article  Google Scholar 

  • Nieuwstadt, F.T., and J.P de Valk (1987): A large-eddy simulation of buoyant and non-buoyant plume dispersion in the atmospheric boundary layer. Atmos. Environ., 21: 2573–2587.

    Article  Google Scholar 

  • Pasquill, F., and F.B. Smith (1983): Atmospheric Diffusion, Third Edition. Chichester, England: Ellis Horwood Ltd.

    Google Scholar 

  • Schatzmann, M. (1979): An integral model of plume rise. Atmos. Environ., 13: 721–731.

    Article  Google Scholar 

  • Schatzmann, M., and A.J. Policastro (1984): An advanced integral model for cooling tower plume dispersion. Atmos. Environ., 18: 663–674.

    Article  Google Scholar 

  • Smith, F.B. (1957): The diffusion of smoke from a continuous elevated point source into a turbulent atmosphere. J. Fluid Mech., 2: 49.

    Article  Google Scholar 

  • Stern, A.C., Ed. (1976): Air Pollution. 3rd Edition, Volume I. New York: Academic Press.

    Google Scholar 

  • Stuhmiller, J. (1974): Development and validation of a two-variable turbulence model. Science Applications, Inc., Report SAI-74–509-LJ, La Jolla, California.

    Google Scholar 

  • Sutherland, V.C., and T.C. Spangler (1980): Comparison of calculated and observed plume rise heights for scrubbed and nonscrubbed buoyant plumes. Preprints, Second Joint Conference on Applications of Air Pollution Meteorology, New Orleans, American Meteorological Society, pp. 129–132.

    Google Scholar 

  • Sykes, R.I., W.S. Lewellen, S.F. Parker, and D.S. Henn (1989): A hierarchy of dynamic plume models incorporating uncertainty. Vol. 2: Stack exhaust model (SEM). A.R.A.P. Division of California Research Technology, Inc., Final Report EA-6095, Vol. 2, Princeton, New Jersey.

    Google Scholar 

  • Turner, D.B. (1985): Proposed pragmatic methods for estimating plume rise and plume penetration through atmospheric layers. Atmos. Environ., 19: 1215–1218.

    Article  Google Scholar 

  • van Haren, L., and F.T. Nieuwstadt (1989): The behavior of passive and buoyant plumes in a convective boundary layer, as simulated with a large-eddy model. J. Appl. Meteor., 28: 818.

    Article  Google Scholar 

  • Weil, J.C. (1974): The rise of moist, buoyant plumes. J. Appl. Meteor., 13: 435–443.

    Article  Google Scholar 

  • Wigley, T.M., and P.R. Slawson (1975): The effect of atmospheric conditions on the length of visible cooling tower plumes. Atmos. Environ., 9: 437–445.

    Article  Google Scholar 

  • Zannetti, P., G. Carboni, R. Lewis, and L. Matamala (1986): AVACTA II - User’s Guide. AeroVironment Inc. Document AV-R-86/530.

    Google Scholar 

  • Zannetti, P., and N. Al-Madani (1983a): Numerical simulations of Lagrangian particle diffusion by Monte-Carlo techniques. VIth World Congress on Air Quality (IUAPPA), Paris, France, May 1983.

    Google Scholar 

  • Zannetti, P., and N. Al-Madani (1983b): Simulation of transformation, buoyancy and removal processes by Lagrangian particle methods. Fourteenth ITM Meeting on Air Pollution Modeling and Its Application. Copenhagen, Denmark, September 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zannetti, P. (1990). Plume Rise. In: Air Pollution Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4465-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4465-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4467-5

  • Online ISBN: 978-1-4757-4465-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics