Air Pollution Meteorology

  • Paolo Zannetti


Most air pollution phenomena occur in the lower part of the atmosphere called the planetary boundary layer, or PBL. The PBL (which is sometimes called the friction layer) is defined as “the region in which the atmosphere experiences surface effects through vertical exchanges of momentum, heat and moisture” (Panofsky and Dutton, 1984).


Atmospheric Boundary Layer Planetary Boundary Layer Unstable Condition Surface Heat Flux Internal Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aloysius, K.L. (1979): On the determination of boundary-layer parameters using velocity profile as the sole information. Boundary-Layer Meteor., 17: 465 - 484.CrossRefGoogle Scholar
  2. Businger, J.A. (1966): Transfer of heat and momentum in the atmospheric layer. Prog. Artc. Heat Budget and Atmos. Circulation. Rand Corp., Santa Monica, California, pp. 305 - 332.Google Scholar
  3. Businger, J.A., and S.P. Arya (1974): Heights of the mixed layer in the stable, stratified planetary boundary layer. Advances in Geophys., 18A: 73 - 92.CrossRefGoogle Scholar
  4. Caughey, S.J., and S.G. Palmer (1979): Some aspects of turbulence structure through the depth of the convection boundary layer. Quart. J. Roy. Meteor. Soc., 105: 811 - 827.CrossRefGoogle Scholar
  5. Caughey, S.J., J.C. Wyngaard, and J.C. Kaimal (1979): Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36: 1041 - 1052.Google Scholar
  6. Deardorff, J.W. (1970): Convective velocity and temperature scales for the unstable planetary boundary layer. J. Atmos. Sci., 27: 1211 - 1213.CrossRefGoogle Scholar
  7. Deardorff, J.W. (1974): Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteor., 7: 81 - 106.Google Scholar
  8. Deardorff, J.W., and E.W. Peterson (1980): The boundary-layer growth equation with Reynolds averaging. J. Atmos. Sci., 37: 1405 - 1409.CrossRefGoogle Scholar
  9. Deardorff, J.W. (1981): Further considerations on the Reynolds average of the kinematic boundary condition. J. Atmos. Sci., 38: 659 - 661.CrossRefGoogle Scholar
  10. Dobbins, R.A. (1979): Atmospheric Motion and Air Pollution. New York: John Wiley.Google Scholar
  11. Garratt, J.R. (1982): Observations in the nocturnal boundary layer. Boundary-Layer Meteor., 22 (1): 21 - 48.CrossRefGoogle Scholar
  12. Golder, D. (1972): Relations among stability parameters in the surface layer. Boundary-Layer Meteor., 3: 47 - 58.CrossRefGoogle Scholar
  13. Gryning, S.E., A.A. Holtslag, J.S. Irwin, and B. Sivertsen (1987): Applied dispersion modelling based on meteorological scaling parameters. Atmos. Environ., 21 (1): 79 - 89.CrossRefGoogle Scholar
  14. Hogstrom, U., and A.S. Hogstrom (1974): Turbulence mechanism at an agricultural site. Boundary-Layer Meteor., 7: 373 - 389.CrossRefGoogle Scholar
  15. Holtslag, A.A., and F.T. Nieuwstadt (1986): Scaling the atmospheric boundary layer. Boundary-Layer Meteor., 36: 201 - 209.CrossRefGoogle Scholar
  16. Hunt, J.C., and J.E. Simpson (1982): Atmospheric boundary layers over nonhomogeneous terrain. In Engineering Meteorology, editted by E. Plate, New York: Elsevier, pp. 269 - 318.Google Scholar
  17. Irwin, J.S. (1979): Estimating plume dispersion: A recommended generalized scheme. Presented at 4th AMS Symposium on Turbulence and Diffusion, Reno, Nevada.Google Scholar
  18. Liu, M.-K., D.R. Durran, P. Mundkur, M. Yocke, and J. James (1976): The chemistry, dispersion, and transport of air pollutants emitted from fossil fuel plants in California: Data analysis and emission impact model. Final report to the Air Resources Board, Contract No. ARB 4 - 258, Sacramento, California.Google Scholar
  19. McRae, G.J., W.R. Goodin, and J.H. Seinfeld (1982): Mathematical modeling of photochemical air pollution. EQL Report No. 18, Environmental Quality Laboratory, Pasadena, California. Also see:Google Scholar
  20. McRae, G.J., W.R. Goodin, and J.H. Seinfeld (1982): Development of a second generation mathematical model for urban air pollution, I. Model formulation. Atmos. Environ., 16 (4): 679 - 696.CrossRefGoogle Scholar
  21. Monin, A.S., and A.M. Obukhov (1954): Basic laws of turbulent mixing in the ground layer of the atmosphere. Trans. Geophys. Inst. Akad., Nauk USSR 151: 163 - 187.Google Scholar
  22. Nieuwstadt, F.T. (1978): The computation of the friction velocity U. and the temperature scale T. from temperature and wind velocity profiles by least-squares methods. Boundary-Layer Meteor., 14: 235 - 246.CrossRefGoogle Scholar
  23. Nieuwstadt, F.T. (1984): The turbulent structure of the stable nocturnal boundary layer. J. Atmos. Sci., 41: 2202 - 2216.CrossRefGoogle Scholar
  24. Pandolfo, J.O. (1966): Wind and temperature for constant flux boundary layers in lapse conditions with a variable eddy conductivity to eddy viscosity ratio. J. Atmos. Sci., 23: 495 - 502.CrossRefGoogle Scholar
  25. Panofsky, H.A., H. Tennekes, D.H. Lenscfhow, and J.C. Wyngaard (1977a): The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Layer Meteor., 11: 355 - 361.CrossRefGoogle Scholar
  26. Panofsky, H.A., W. Heck, and M.A. Bender (1977b): The effect of clear-air turbulence on a model of the general circulation of the atmosphere. Beitr. Phys. Atmos., 50: 89 - 97.Google Scholar
  27. Panofsky, H.A., and J.A. Dutton (1984): Atmospheric Turbulence. New York: John Wiley.Google Scholar
  28. Pasquill, F. (1974): Atmospheric Diffusion, 2nd Edition. New York: Halsted Press of John Wiley Sons.Google Scholar
  29. Pielke, R.A., and Y. Mahrer (1975): Technique to represent the heated-planetary boundary layer in mesoscale models with coarse vertical resolution. J. Atmos. Sci., 32: 2288 - 2308.CrossRefGoogle Scholar
  30. Pielke, R.A. (1984): Mesoscale Meteorological Modeling. Orlando, Florida: Academic Press.Google Scholar
  31. Sorbjan, Z. (1986): On similarity in the atmospheric boundary layer. Boundary-Layer Meteor., 34: 377 - 397.CrossRefGoogle Scholar
  32. Sorbjan, Z. (1988): Local similarity in the convection boundary layer (CBL). Boundary-Layer Meteor., 45: 237 - 250.CrossRefGoogle Scholar
  33. Stern, A.C., R.W. Boubel, D.B. Turner, and D.L. Fox (1984): Fundamentals of Air Pollution. Orlando, Florida: Academic Press.Google Scholar
  34. van Ulden, A.P., and A.A. Holtslag (1985): Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate and Appl. Meteor., 24: 1196 - 1207.CrossRefGoogle Scholar
  35. Venkatram, A. (1980): Estimating the Monin—Obukhov length in the stable boundary layer for dispersion calculations. Boundary-Layer Meteor., 19: 481 - 485.CrossRefGoogle Scholar
  36. Wilczak, J.M., and M.S. Phillips, (1986): An indirect estimation of convection boundary layer structure for use in pollution dispersion models. J. Climate and Appl. Meteor., 25: 1609 - 1624.CrossRefGoogle Scholar
  37. Williamson, S.J. (1973): Fundamentals of Air Pollution. Reading, Massachusetts: Addison-Wesley.Google Scholar
  38. Wyngaard, J.C., O.R. Cote, and K.S. Rao (1974): Modeling the atmospheric boundary layer. Advances in Geophys., 18A: 193 - 211.CrossRefGoogle Scholar
  39. Wyngaard, J.C., and M.A. LeMone (1980): Behavior of the refractive index structure parameter in the entraining convective boundary layer. J. Atmos. Sci., 37: 1573 - 1585.CrossRefGoogle Scholar
  40. Zilitinkevich, S.S. (1970): Dynamics of the Atmospheric Boundary Layer. Leningrad: Hydrometerol.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations