Statistical Methods

  • Paolo Zannetti


Statistical methods are frequently used in air pollution studies. Several types of statistical models, methods and analyses will be discussed in this chapter.


Kalman Filter Time Series Analysis Dispersion Model Receptor Model Chemical Mass Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcamo, J., and J. Bartnicki (1987): A framework for error analysis of a long-range transport model with emphasis on parameter uncertainty. Atmos. Environ., 21 (10): 2121–2131.CrossRefGoogle Scholar
  2. Arkadev, A.G., and E.M. Braverman (1967): Teaching Computers to Recognize Patterns. London: Academic Press.Google Scholar
  3. Bacci, P., P. Bolzern, and G. Fronza (1981): A stochastic predictor of air pollution based on short-term meteorological forecasts. J. Appl. Meteor., 20 (2): 121–129.CrossRefGoogle Scholar
  4. Bankoff, S.G., and E.L. Hanzevack (1975): The adaptive filtering transport model for prediction and control of pollutant concentration in an urban airshed. Atmos. Environ., 18: 701–712.Google Scholar
  5. Barnes, M.G. (1980): The use of Kriging for estimating the spatial distribution of radionuclides and other spatial phenomena. Tran-Stat, Battelle Memorial Institute, Pacific Northwest Laboratories., Richland, Washington.Google Scholar
  6. Barone, J.B., T.A. Cahill, R.A. Eldred, R.G. Flocchini, D.J. Shadoan, and T.M. Dietz (1978): A multivariate statistical analysis of visibility degradation at four California cities. Atmos. Environ., 12: 2213–2221.CrossRefGoogle Scholar
  7. Berge, P., Y. Pomeau, and C. Vidal (1984): Order Within Chaos. New York: John Wiley.Google Scholar
  8. Bornstein, R.D., and S.F. Anderson (1979): A survey of statistical techniques used in validation studies of air pollution prediction models. Technical Report No. 23, Stanford University, Stanford, California.Google Scholar
  9. Box, G.E., and G.M. Jenkins (1976): Time Series Analysis, Forecasting and Control. San Francisco: Holden-Day.Google Scholar
  10. Buishand, T.A., G.T. Kempen, A.J. Frantzen, H.F. Reijnders, and A.J. van den Eshof (1988): Trend and seasonal variations of precipitation chemistry data in the Netherlands. Atmos. Environ., 22 (2): 339–348.CrossRefGoogle Scholar
  11. Cats, G.J., and A.A. Holtslag (1980): Prediction of air pollution frequency distribution. Part I: The lognormal model. Atmos. Environ., 14: 255–258.CrossRefGoogle Scholar
  12. Chock, D.P., and P.S. Sluchak (1986): Estimating extreme values of air quality data using different fitted distributions. Atmos. Environ., 20 (5): 989–993.CrossRefGoogle Scholar
  13. Chock, D.P., T.R. Terrel, and S.B. Levitt (1975): Time-series analysis of Riverside, California air quality data. Atmos. Environ., 9: 978–989.CrossRefGoogle Scholar
  14. Chow, J.C., P.W. Severance, and J.D. Spengler (1985): A composite application of source and receptor models to fine particle concentrations in Portage, Wisconsin. Proceedings, 78th Annual APCA Meeting. Detroit, Michigan, June.Google Scholar
  15. Cooper, J.A. (1983): Receptor model approach to source apportionment of acid rain precursors. Proceedings, VIth World Congress on Air Quality, Paris, France, May 16–20, pp. 223–229.Google Scholar
  16. Desalu, A.A., L.A. Gould, and F.C. Schweppe (1974): Dynamic estimation of air pollution. IEEE Transactions on Automatic Control AC-19, pp. 904–910.Google Scholar
  17. Drufuca, G., and M. Giugliano (1978): Relationship between maximum SO 2 concentration, averaging time and average concentration in an urban area. Atmos. Environ., 12: 1901–1905.CrossRefGoogle Scholar
  18. Edgerton, S.A., and M.W. Holdren (1987): Use of pattern recognition techniques to characterize local sources of toxic organics in the atmosphere. Environ. Sci. Technol., 21 (11): 1102–1107.CrossRefGoogle Scholar
  19. Endlich, R.M., F.L. Ludwig, and E.E. Uthe (1979): An automatic method for determining the mixing depth from LIDAR observations. Atmos. Environ., 13: 1051–1056.CrossRefGoogle Scholar
  20. Eynon, B.P. (1988): Statistical analysis of precipitation chemistry measurements over the eastern United States. Part II: Kriging analysis of regional patterns and trends. J. Appl. Meteor., 27: 1334–1343.CrossRefGoogle Scholar
  21. Fedorov, V.V. (1989): Kriging and other estimators of spatial field characteristics (with special reference to environmental studies). Atmos. Environ., 23 (1): 175–184.CrossRefGoogle Scholar
  22. Finzi, G., and G. Tebaldi (1982): A mathematical model for air pollution forecast and alarm in an urban area. Atmos. Environ., 16 (9): 2055–2059.CrossRefGoogle Scholar
  23. Fox, D.C. (1981): Judging air quality model performance. J. Climate and Appl. Meteor., 62: 599–609.Google Scholar
  24. Fox, D.C. (1984): Uncertainty in air quality modeling. J. Climate and Appl. Meteor., 65: 27–36.Google Scholar
  25. Fronza, G., A. Spirito, and A. Tonielli (1979): Real-time forecast of air pollution episodes in the Venetian region. Part 2: The Kalman predictor. Appl. Math. Model., 3: 409–415CrossRefGoogle Scholar
  26. Fu, K.S. (1968): Sequential Methods in Pattern Recognition. New York: Academic Press. Fu, K.S. (1974): Syntactic Methods in Pattern Recognition. New York: Academic Press.Google Scholar
  27. Fukunaga, K. (1972): Introduction to Statistical Pattern Recognition. New York: Academic Press.Google Scholar
  28. Georgopoulos, P.G., and J.H Seinfeld (1982): Statistical distributions of air pollutant concentrations. Environ. Sci. and Technol., 16: 401A - 415A.CrossRefGoogle Scholar
  29. Gilbert, R.O. (1987): Statistical Methods for Environmental Pollution Monitoring. New York: Van Nostrand Reinhold.Google Scholar
  30. Gomez, M.L., and M.C. Martin (1987): Applications of cluster analysis to identify sources for airborne particles. Atmos. Environ., 21 (7): 1521–1527.CrossRefGoogle Scholar
  31. Gordon, G.E. (1988): Receptor models. Environ. Sci. and Tech., 22 (10): 1132.CrossRefGoogle Scholar
  32. Grebogi, C., E. Ott, and J.A. Yorke (1987): Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science, 238: 632–637.CrossRefGoogle Scholar
  33. Hanna, S.R., and D.W. Heinold (1985): Development and application of a simple method for evaluating air quality models. American Petroleum Institute Publication 4409, Washington, D.C.Google Scholar
  34. Little, R.J., and D.B. Rubin (1987): Statistical Analysis with Missing Data. New York: John Wiley.Google Scholar
  35. Hanna, S.R. (1988): Air quality model evaluation and uncertainty. JAPCA, 38: 406–412.CrossRefGoogle Scholar
  36. Hanna, S.R. (1989): Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods. Atmos. Environ., 23 (6): 1385–1389.CrossRefGoogle Scholar
  37. Heidam, N.Z. (1987): Bootstrap estimates of factor model variability. Atmos. Environ., 21 (5): 1203–1217.CrossRefGoogle Scholar
  38. Henry, R.C. (1987): Current factor analysis receptor models are ill-posed. Atmos. Environ., 21 (8): 1815–1820.CrossRefGoogle Scholar
  39. Henry, R.C., and G.M. Hidy (1979): Multivariate analysis of particulate sulfate and other air quality variables by principal components. Part I: Annual data from Los Angeles and New York. Atmos. Environ., 13: 1581–1596.CrossRefGoogle Scholar
  40. Henry, R.C., C.W. Lewis, P.K. Hopke, and H.I. Williamson (1984): Review of receptor model fundamentals. Atmos. Environ., 18: 1507–1515.CrossRefGoogle Scholar
  41. Hino, M. (1974): Prediction of atmospheric pollution by Kalman filtering. Proceedings, Symposium on Modeling for Prediction and Control of Air Pollution.Google Scholar
  42. Hopke, P.K. (1988): Target transformation factor analysis as an aerosol mass apportionment method: A review and sensitivity study. Atmos. Environ., 22 (9): 1777–1792.CrossRefGoogle Scholar
  43. Horowitz, J., and S. Barakat (1979): Statistical analysis of the maximum concentration of an air pollutant: Effects of autocorrelation and non-stationarity. Atmos. Environ., 13: 811–818.CrossRefGoogle Scholar
  44. Irwin, J.S., and M.E. Smith (1984): Potentially useful additions to the rural model performance evaluation. J. Climate and Appl. Meteor., 65: 559.Google Scholar
  45. Irwin, J.S., S.T. Rao, W.B. Peterson, and D.B. Turner (1987): Relating error bounds for maximum concentration estimates to diffusion meteorology uncertainty. Atmos. Environ., 21 (9): 1927–1937.CrossRefGoogle Scholar
  46. Jazwinski, A.H. (1970): Stochastic Processes and Filtering Theory. New York: Academic Press.Google Scholar
  47. Jenkins, G.M., and D.G. Watts (1968): Spectral Analysis and Its Applications. San Francisco: Holden-Day.Google Scholar
  48. Kahn, H.D. (1973): Distribution of Air Pollutants. JAPCA, 23: 973.Google Scholar
  49. Kalman, R.E. (1960): A new approach to linear filtering and prediction problems. J. Basic Eng., pp. 35–108Google Scholar
  50. Langstaff, J.E., C. Seigneur, M.-K. Liu, J.V. Behar, and J.L. McElroy (1987): Design of an optimum air monitoring network for exposure assessments. Atmos. Environ., 21 (6): 1393–1410.Google Scholar
  51. Larsen, R.I. (1971): EPA Publication No. AP-89, Research Triangle Park, North Carolina.Google Scholar
  52. Lin, G.Y., (1982): Oxidant prediction by discriminant analysis in the south coast air basin of California. Atmos. Environ., 16 (1): 135–143.CrossRefGoogle Scholar
  53. Longhetto, A., Ed. (1980): Atmospheric Planetary Boundary Layer Physics. New York: Elsevier.Google Scholar
  54. Liu, M.-K., J. Arvin, R.I. Pollack, J.V. Behar, and J.L. McElroy (1986): Methodology for designing air quality monitoring networks. I: Theoretical aspects. Environ. Monitoring and Assessment, 6: 1–11.CrossRefGoogle Scholar
  55. Ludwig, F.L. (1989): Atmospheric fractals — A review. Environ. Software, 4 (1): 9–16.CrossRefGoogle Scholar
  56. Malm, W., K. Gebhart, D.A. Latimer, T.A. Cahill, R. Eldred, R.A. Pielke, R. Stocker, J.G. Watson (1989): Winter Haze Intensive Tracer Experiment. National Park Service draft final report, December.Google Scholar
  57. Mandelbrot, B.B. (1975): On the geometry of homogeneous turbulence with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech., 72: 401–416.CrossRefGoogle Scholar
  58. Marani, A., 1. Lavagnini, C. Buttazzoni (1986): Statistical study of air pollutant concentrations via generalized gamma distributions. JAPCA, 36: 1250–1254.Google Scholar
  59. Matheron, G. (1971): The theory of regionalized variables and its applications. Ecole des Mines de Paris, Fontainbleau No. 5.Google Scholar
  60. Melli, P., P. Bolzern, G. Fronza, and A. Spirito (1981): Real-time control of sulphur dioxide emissions from an industrial area. Atmos. Environ., 15: 653–666.CrossRefGoogle Scholar
  61. Moore, G.E., M.-K. Liu, and R.J. Londergan (1985): Diagnostic validation of Gaussian and first-order closure plume models at a moderately complex terrain site. Systems Applications, Inc., Final Report EA-3760, San Rafael, California.Google Scholar
  62. Murphy, A.H. (1988): Skill scores based on the mean square error and their relationships to the correlation coefficient. J. Climate and Appl. Meteor., 116: 2417–2424.Google Scholar
  63. Murray, L.C., and R.J. Farber (1982): Time series analysis of an historical visibility data base. Atmos. Environ., 16: 2299–2308.CrossRefGoogle Scholar
  64. Nakamori, Y., and Y. Sawaragi (1984): Interactive design of urban level air quality monitoring network. Atmos. Environ., 18 (4): 793–799.CrossRefGoogle Scholar
  65. Nilsson, N.J. (1965): Learning Machines. McGraw-Hill.Google Scholar
  66. Noll, K.E., T.L. Miller, J.E. Norco, and R.K. Raufer (1977): An objective air monitoring site selection methodology for large point sources. Atmos. Environ., 11: 1051–1059.CrossRefGoogle Scholar
  67. Petersen, J.T. (1970): Distribution of sulfur dioxide over metropolitan St. Louis, as described by empirical eigenvectors, and its relation to meteorological parameters. Atmos. Environ., 4: 501–518.CrossRefGoogle Scholar
  68. Plackett, R.L. (1950): Biometrika, 37: 149.Google Scholar
  69. Reynolds, S.D., C. Seigneur, T.E. Stoeckenius, G.E. Moore, R.G. Johnson, and R.J. Londergan (1984): Operational validation of Gaussian plume models at a plains site. Systems Applications, Inc., Final Report EA-3076, San Rafael, California.Google Scholar
  70. Reynolds, S.D., T.C. Myers, J.E. Langstaff, M.—K. Liu, G.E. Moore, and R.E. Morris(1985): Operational validation of Gaussian and first—order closure plume models at a moderately complex terrain site. Systems Applications, Inc., Final Report EA-3759, San Rafael, California.Google Scholar
  71. Romesburg, H.C. (1984): Cluster Analysis for Researchers. Belmont, California: Lifetime Learning Publications.Google Scholar
  72. Roberts, E.M. (1979): Review of statistics of extreme values with applications to air quality data. Part I: Review. JAPCA, 29 (6): 632–637.Google Scholar
  73. Roberts, E.M. (1979): Review of statistics of extreme values with applications to air quality data. Part II: Applications. JAPCA, 29 (7): 733–740.Google Scholar
  74. Roy, R., and I. Pellerin (1982): On long term air quality trends and intervention analysis. Atmos. Environ., 16: 161–169.CrossRefGoogle Scholar
  75. Ruff, R.E., K.C. Nitz, F.L. Ludwig, C.M. Bhumralkar, J.D. Shannon, C.M. Sheih, I.Y. Lee, R. Kumar, and D.J. McNaughton (1984): Regional air quality model assessment and evaluation. SRI International Final Report EA-3671, Menlo Park, California.Google Scholar
  76. Sage, A.P., and I.L. Melsa (1971): Estimation Theory with Applications to Communications and Control. New York: McGraw—Hill.Google Scholar
  77. Sawaragi, Y., T. Soeda, T. Yoshimura, S. Oh, Y. Chujo, and H. Ishihara (1976): The predictions of air pollution levels by nonphysical models based on Kalman filtering method. J. Dynamic Sys., Measurement and Control, 98 (12): 375–386.CrossRefGoogle Scholar
  78. Scheff, P.A. R.A. Wadden, and R.I. Allen (1984): Development and validation of a chemical element mass balance for Chicago. Environ. Sci. Technol., 18: 923–931.CrossRefGoogle Scholar
  79. Seinfeld, J.H. (1972): Optimal location of pollutant monitoring stations in an airshed. Atmos. Environ., 6: 847–858.CrossRefGoogle Scholar
  80. Seinfeld, J.H. (1986): Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley.Google Scholar
  81. Simpson, R.W., and A.P. Layton (1983): Forecasting peak ozone levels. Atmos. Environ., 17: 1649–1654.CrossRefGoogle Scholar
  82. Trivikrama, S.R., P.I. Samson, and A.R. Pedadda (1976): Spectral analysis approach to the dynamics of air pollutants. Atmos. Environ., 10: 375–379.CrossRefGoogle Scholar
  83. Surman, P.G., J. Bodero, and R.W. Simpson (1987): The prediction of the numbers of violations of standards and the frequency of air pollution episodes using extreme value theory. Atmos. Environ., 21 (8): 1843–1848.CrossRefGoogle Scholar
  84. Tauber, S. (1978): Pattern recognition methods in air pollution control. Atmos. Environ., 12: 2377–2382.CrossRefGoogle Scholar
  85. Tiao, G.C., G.E. Box, and W.J. Hamming (1975): Analysis of Los Angeles photochemical smog data: A statistical overview. JAPCA, 25: 260–268.Google Scholar
  86. Tilley, T., and G.A. McBean (1973): An application of spectrum analysis to synoptic—pollution data. Atmos. Environ., 7: 793–801.CrossRefGoogle Scholar
  87. Tsukatami, T., and K. Shigemitsu (1980): Atmos. Environ., 14: 245.CrossRefGoogle Scholar
  88. Borm, W.A., and F.C. Adams (1988): Cluster analysis of electron microprobe analysis data of individual particles for source apportionment of air particulate matter. Atmos. Environ., 22 (10): 2297–2307.CrossRefGoogle Scholar
  89. Venkatram, A. (1982): A framework for evaluating air quality models. Boundary-Layer Meteor., 24: 371–385.CrossRefGoogle Scholar
  90. Venkatram, A. (1983): Uncertainty in predictions from air quality models. Boundary-Layer Meteor., 27: 185–196.CrossRefGoogle Scholar
  91. Venkatram, A. (1988a): Inherent uncertainty in air quality modeling. Atmos. Environ., 22 (6): 1221–1227.CrossRefGoogle Scholar
  92. Venkatram, A. (1988b): On the use of Kriging in the spatial analysis of acid precipitation data. Atmos. Environ., 22 (9): 1963–1979.CrossRefGoogle Scholar
  93. Watson, J.G. (1984): Overview of receptor model principles. JAPCA, 34: 619–623.Google Scholar
  94. Wiener, N. (1949): The Extrapolation, Interpolation and Smoothing of Stationary Time Series. New York: John Wiley.Google Scholar
  95. Williams, P.C. (1984): Data handling, simultaneity, and rare events. JAPCA, 34: 945–951.Google Scholar
  96. Young, P. (1974): Recursive approaches to time series analysis. In The Inst. of Mathematics and its Application, pp. 209–224.Google Scholar
  97. Zannetti, P. (1978): Short-term real-time control of air pollution episodes in Venice. Proceedings, 71st Annual APCA Meeting, Houston, Texas, June.Google Scholar
  98. Zannetti, P., G. Finzi, G. Fronza, and S. Rinaldi (1978): Time series analysis of Venice air quality data. IFAC Symposium on Environmental Systems, Planning, Design, and Control, August 1–5, 1977, Kyoto, Japan.Google Scholar
  99. Zannetti, P., and P. Switzer (1979a): The Kalman filtering method and its application to air pollution episode forecasting. Paper presented at the APCA Specialty Conference on Quality Assurance in Air Pollution Measurement, New Orleans, Louisiana, March.Google Scholar
  100. Zannetti, P., and P. Switzer (1979b): Some problems of validation and testing of numerical air pollution models. Proceedings, Fourth Amer. Meteor. Soc. Symp. on Turbulence, Diffusion, and Air Pollution, Reno, Nevada. January, pp. 405–410.Google Scholar
  101. Zinsmeister, A.R., and T.C. Redman (1980): A time series analysis of aerosol composition measurements. Atmos. Environ., 14: 201–215.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations