Dry and Wet Deposition

  • Paolo Zannetti

Abstract

Deposition phenomena are the way in which the atmosphere cleans itself. The process is efficient as only a few gases (most notably CO 2) show signs of global increase in spite of the large emission of pollutants from both natural and anthropogenic sources. There are two types of deposition mechanisms: dry deposition, i.e., the uptake at the earth’s surface (soil, water, or vegetation), and wet deposition, i.e., absorption into droplets followed by droplet precipitation (e.g., by rain) or impaction on the earth’s surface (e.g., fog droplets).

Keywords

Deposition Velocity Gravitational Settling Deposition Phenomenon Precipitation Scavenge Lagrangian Particle Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, M.S., D. Caniparoli, and H. Harrison (1981): An analysis of the first year of MAP3S rain chemistry measurements. Atmos. Environ., 15: 43–55.CrossRefGoogle Scholar
  2. Bilonick, R.A., and D.G. Nichols (1983): Temporal variations in acid precipitation over New York State–What the 1965–1979 USGS data reveal. Atmos. Environ., 17: 1063–1072.CrossRefGoogle Scholar
  3. Davies, T.D. (1983): Sulphur dioxide precipitation scavenging. Atmos. Environ., 17: 797–805.CrossRefGoogle Scholar
  4. Doran, J.C. (1979): Sensitivity of particle deposition to changes in deposition velocity. Atmos. Environ., 13: 1269–1273.CrossRefGoogle Scholar
  5. Doran, J.C., et al. (1984): Field validation of exposure assessment models. Vol. I, Data. U.S. EPA Document EPA–600/3–84–092a. Office of Research and Development, Research Triangle Park, North Carolina. Also NTIS PB85–107209, Springfield, Virginia.Google Scholar
  6. Doran, J.C., and T.W. Horst (1985): An evaluation of Gaussian plume-depletion models with dual-tracer field measurements. Atmos. Environ., 19: 939–951.CrossRefGoogle Scholar
  7. Finlayson-Pitts, B.J., and J.N. Pitts, Jr. (1986): Atmospheric Chemistry. New York: John Wiley.Google Scholar
  8. Garland, J.A. (1978): Dry and wet removal of sulphur from the atmosphere. Atmos. Environ., 12: 349–362.CrossRefGoogle Scholar
  9. Hales, J.M. (1986): The mathematical characterization of precipitation scavenging and precipitation chemistry. In The Handbook of Environmental Chemistry, Vol. 4, Part A, edited by O. Hutzinger. Heidelberg: Springer-Verlag.Google Scholar
  10. Hales, J.M. (1989): A generalized multidimensional model for precipitation scavenging and atmospheric chemistry. Atmos. Environ., 23 (9): 2017–2031.CrossRefGoogle Scholar
  11. Hicks, B.B. (1982): In Critical Assessment Document on Acid Deposition (Chapter VII - Dry Deposition). ATDL Contributory File 81/24. Atmospheric Turbulence and Diffusion Laboratory, NOAA, Oak Ridge, Tennessee.Google Scholar
  12. Houghton, D.D., Ed. (1985): Handbook of Applied Meteorology. New York: WileyInterscience.Google Scholar
  13. Nicholson, K.W. (1988a): The dry deposition of small particles: A review of experimental measurements. Atmos. Environ., 22 (12): 2653–2666.CrossRefGoogle Scholar
  14. Nicholson, K.W. (1988b): A review of particle resuspension. Atmos. Environ., 22 (12): 2639–2651.CrossRefGoogle Scholar
  15. Noll, K.E., and K.Y. Fang (1989): Development of a dry deposition model for atmospheric coarse particles. Atmos. Environ., 23 (3): 585–594.CrossRefGoogle Scholar
  16. O’Dell, R.A., M. Taheri, and R.L. Kabel (1977): A model for uptake of pollutants by vegetation. JAPCA, 27: 1104–1109.Google Scholar
  17. Pleim, J.E., A. •Venkatram, and R.J. Yamartino (1984): The Dry Deposition Model, Vol. 4. ADOMITADAP Model Development Program. Ontario Ministry of the Environment, Rex-dale, Ontario, Canada.Google Scholar
  18. Schwartz, S.E. (1989): Acid deposition: Unraveling a regional phenomenon. Science, 243: 753–763.CrossRefGoogle Scholar
  19. Sehmel, G.A. (1980): Particle and gas dry deposition: A review. Atmos. Environ., 14: 983–1011.CrossRefGoogle Scholar
  20. Seinfeld, J.H. (1986): Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley.Google Scholar
  21. Slinn, W.G., L. Hasse, B.B. Hicks, A.W. Hogan, D. Lal, P.S. Liss, K.O. Munnich, G.A. Sehmel, and O. Vittori (1978): Some aspects of the transfer of atmospheric trace constituents past the air—sea interface. Atmos. Environ., 12: 2055–2087.CrossRefGoogle Scholar
  22. Smith, F.B. (1981): The significance of wet and dry synoptic regions on long— range transport of pollution and its deposition. Atmos. Environ., 15: 863–873.CrossRefGoogle Scholar
  23. Voldner, E.C., L.A. Barrie, and A. Sirois (1986): A literature review of dry deposition of oxides of sulphur and nitrogen with emphasis on long—range transport modelling in North America. Atmos. Environ., 20 (11): 2101–2123.CrossRefGoogle Scholar
  24. Wesely, M.L., and B.B. Hicks (1977): Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. JAPCA, 27: 1110–1116.Google Scholar
  25. Wesely, M.L. (1989): Parameterization of surface resistances to gaseous dry deposition in regional—scale numerical models. Atmos. Environ., 6: 1293–1304.Google Scholar
  26. Wisniewski, J., and J.D. Kinsman (1982): An overview of acid rain monitoring activities in North America. J. Climate and Appl. Meteor. Soc., 63: 598–618.Google Scholar
  27. Yamartino, R.J., J.S. Scire, S.R. Hanna, G.R. Carmichael, Y.S. Chang (1989): CALGRID: A mesoscale photochemical grid model. Sigma Research Corp. Report A049–1. Prepared for the California Air Resources Board, Sacramento, California.Google Scholar
  28. Zannetti, P., and N. Al—Madani (1983): Simulation of transformation, buoyancy and removal processes by Lagrangian particle methods. Fourteenth ITM Meeting on Air Pollution Modeling and Its Application. Copenhagen, Denmark, September 1983.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations